ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically tunable stacking domains and ferroelectricity in moire superlattices

132   0   0.0 ( 0 )
 نشر من قبل Daniel Bennett
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that stacking domains form in moire superlattices due to the competition between the interlayer van der Waals forces and intralayer elastic forces, which can be recognized as polar domains due to the local spontaneous polarization in bilayers without centrosymmetry. We propose a theoretical model which captures the effect of an applied electric field on the domain structure. The coupling between the spontaneous polarization and field leads to uneven relaxation of the domains, and a net polarization in the superlattice at nonzero fields, which is sensitive to the moire period. We show that the dielectric response to the field reduces the stacking energy and leads to softer domains in all bilayers. We then discuss the recent observations of ferroelectricity in the context of our model.

قيم البحث

اقرأ أيضاً

In heterostructures consisting of atomically thin crystals layered on top of one another, lattice mismatch or rotation between the layers results in long-wavelength moire superlattices. These moire patterns can drive significant band structure recons truction of the composite material, leading to a wide range of emergent phenomena including superconductivity, magnetism, fractional Chern insulating states, and moire excitons. Here, we investigate monolayer graphene encapsulated between two crystals of boron nitride (BN), where the rotational alignment between all three components can be varied. We find that band gaps in the graphene arising from perfect rotational alignment with both BN layers can be modified substantially depending on whether the relative orientation of the two BN layers is 0 or 60 degrees, suggesting a tunable transition between the absence or presence of inversion symmetry in the heterostructure. Small deviations ($<1^{circ}$) from perfect alignment of all three layers leads to coexisting long-wavelength moire potentials, resulting in a highly reconstructed graphene band structure featuring multiple secondary Dirac points. Our results demonstrate that the interplay between multiple moire patterns can be utilized to controllably modify the electronic properties of the composite heterostructure.
We investigate the electronic structure of the flat bands induced by moire superlattices and electric fields in nearly aligned ABC trilayer graphene-boron nitride interfaces where Coulomb effects can lead to correlated gapped phases. Our calculations indicate that valley-spin resolved isolated superlattice flat bands that carry a finite Chern number $C = 3$ proportional to layer number can appear near charge neutrality for appropriate perpendicular electric fields and twist angles. When the degeneracy of the bands is lifted by Coulomb interactions these topological bands can lead to anomalous quantum Hall phases that embody orbital and spin magnetism. Narrow bandwidths of $sim10$ meV achievable for a continuous range of twist angles $theta lesssim 0.6^{circ}$ with moderate interlayer potential differences of $sim$50 meV make the TLG/BN systems a promising platform for the study of electric-field tunable Coulomb interaction driven spontaneous Hall phases.
Moire superlattices in van der Waals (vdW) heterostructures have given rise to a number of emergent electronic phenomena due to the interplay between atomic structure and electron correlations. A lack of a simple way to characterize moire superlattic es has impeded progress in the field. In this work we outline a simple, room-temperature, ambient method to visualize real-space moire superlattices with sub-5 nm spatial resolution in a variety of twisted vdW heterostructures including but not limited to conducting graphene, insulating boron nitride and semiconducting transition metal dichalcogenides. Our method utilizes piezoresponse force microscopy, an atomic force microscope modality which locally measures electromechanical surface deformation. We find that all moire superlattices, regardless of whether the constituent layers have inversion symmetry, exhibit a mechanical response to out-of-plane electric fields. This response is closely tied to flexoelectricity wherein electric polarization and electromechanical response is induced through strain gradients present within moire superlattices. Moire superlattices of 2D materials thus represent an interlinked network of polarized domain walls in a non-polar background matrix.
We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{ 2z}$ symmetry on the moire length scale. Within elastic theory, we provide a complete classification of van der Waals heterostructures in respect to hosting moire chiral phonons and discuss their emergence in twisted bilayer MoS$_2$ as an example. The formation of the chiral phonons can be qualitatively understood using an effective model, which emphasizes their origin in the energy difference between stacking domains. Since moire chiral phonons are highly tunable, with excitation energies in only a few meV, and moire scale wavelengths, they might find potential applications in phononic twistronic devices.
2D ferroelectrics with robust polarization down to atomic thicknesses provide novel building blocks for functional heterostructures. Experimental reports, however, remain scarce because of the requirement of a layered polar crystal. Here, we demonstr ate a rational design approach to engineering 2D ferroelectrics from a non-ferroelectric parent compound via employing van der Waals assembly. Parallel-stacked bilayer boron nitride is shown to exhibit out-of-plane electric polarization that reverses depending on the stacking order. The polarization switching is probed via the resistance of an adjacently-stacked graphene sheet. Furthermore, twisting the boron nitride sheets by a small-angle changes the dynamics of switching due to the formation of moire ferroelectricity with staggered polarization. The ferroelectricity persists to room temperature while keeping the high mobility of graphene, paving the way for potential ultrathin nonvolatile memory applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا