ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasiparticle Interference and Strong Electron-Mode Coupling in the Quasi-One-Dimensional Bands of Sr$_2$RuO$_4$

91   0   0.0 ( 0 )
 نشر من قبل Zhenyu Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The single-layered ruthenate Sr$_2$RuO$_4$ has attracted a great deal of interest as a spin-triplet superconductor with an order parameter that may potentially break time reversal invariance and host half-quantized vortices with Majorana zero modes. While the actual nature of the superconducting state is still a matter of controversy, it has long been believed that it condenses from a metallic state that is well described by a conventional Fermi liquid. In this work we use a combination of Fourier transform scanning tunneling spectroscopy (FT-STS) and momentum resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects in the normal state of Sr$_2$RuO$_4$. Our high-resolution FT-STS data show signatures of the beta-band with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, suggesting that the normal state of Sr$_2$RuO$_4$ is that of a correlated metal where correlations are strengthened by the quasi 1D nature of the bands. In addition, kinks at energies of approximately 10meV, 38meV and 70meV are observed. By comparing STM and M-EELS data we show that the two higher energy features arise from coupling with collective modes. The strong correlation effects and the kinks in the quasi 1D bands may provide important information for understanding the superconducting state. This work opens up a unique approach to revealing the superconducting order parameter in this compound.

قيم البحث

اقرأ أيضاً

The single-layered ruthenate Sr$_2$RuO$_4$ is one of the most enigmatic unconventional superconductors. While for many years it was thought to be the best candidate for a chiral $p$-wave superconducting ground state, desirable for topological quantum computations, recent experiments suggest a singlet state, ruling out the original $p$-wave scenario. The superconductivity as well as the properties of the multi-layered compounds of the ruthenate perovskites are strongly influenced by a van Hove singularity in proximity of the Fermi energy. Tiny structural distortions move the van Hove singularity across the Fermi energy with dramatic consequences for the physical properties. Here, we determine the electronic structure of the van Hove singularity in the surface layer of Sr$_2$RuO$_4$ by quasiparticle interference imaging. We trace its dispersion and demonstrate from a model calculation accounting for the full vacuum overlap of the wave functions that its detection is facilitated through the octahedral rotations in the surface layer.
We study the magnetic susceptibility in the normal state of Sr$_2$RuO$_4$ using dynamical mean-field theory including dynamical vertex corrections. Besides the well known incommensurate response, our calculations yield quasi-local spin fluctuations w hich are broad in momentum and centered around the $Gamma$ point, in agreement with recent inelastic neutron scattering experiments [P. Steffens, et al., Phys. Rev. Lett. 122, 047004 (2019)]. We show that these quasi-local fluctuations are controlled by the Hunds coupling and account for the dominant contribution to the momentum-integrated response. While all orbitals contribute equally to the incommensurate response, the enhanced $Gamma$ point response originates from the planar xy orbital.
The importance of electronic correlation effects in the layered perovskite Sr$_2$RuO$_4$ is evidenced. To this end we use state-of-the-art LDA+DMFT (Local Density Approximation + Dynamical Mean-Field Theory) in the basis of Wannier functions to compu te spectral functions and the quasiparticle dispersion of Sr$_2$RuO$_4$. The spectra are found to be in good agreement with various spectroscopic experiments. We also calculate the $textbf{k}$-dependence of the quasiparticle bands and compare the results with new angle resolved photoemission (ARPES) data. Two typical manifestations of strong Coulomb correlations are revealed: (i) the calculated quasiparticle mass enhancement of $m^*/m approx2.5$ agrees with various experimental results, and (ii) the satellite structure at about 3 eV binding energy observed in photoemission experiments is shown to be the lower Hubbard band. For these reasons Sr$_2$RuO$_4$ is identified as a strongly correlated 4$d$ electron material.
The quasiparticle interference (QPI) in Sr$_{2}$RuO$_{4}$ is theoretically studied based on two different pairing models in order to propose an experimental method to test them. For a recently proposed two-dimensional model with pairing primarily fro m the $gamma$ band, we found clear QPI peaks evolving with energy and their locations can be determined from the tips of the constant-energy contour (CEC). On the other hand, for a former quasi-one-dimensional model with pairing on the $alpha$ and $beta$ bands, the QPI spectra are almost dispersionless and may involve off-shell contributions to the scatterings beyond the CEC. The different behaviors of the QPI in these two models may help to resolve the controversy of active/passive bands and whether Sr$_{2}$RuO$_{4}$ is a topological superconductor.
Motivated by the anomalous temperature dependence of the c-axis resistivity of Sr$_2$RuO$_4$, the dimensional crossover from a network of perpendicular one-dimensional chains to a two-dimensional system due to a weak hybridization between the perpend icular chains is studied. The corresponding two-orbital Hubbard model is treated within a slave-boson mean-field theory (SBMFT) to take correlation effects into account such as the spin-charge separation on the one-dimensional chains. Using an RPA-like formulation for the Greens function of collective spinon-holon excitations the emergence of quasiparticles at low-temperatures is examined. The results are used to discuss the evolution of the spectral density and the c-axis transport within a tunneling approach. For the latter a regime change between low- and high-temperature regime is found in qualitative accordance with experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا