ﻻ يوجد ملخص باللغة العربية
Motivated by the anomalous temperature dependence of the c-axis resistivity of Sr$_2$RuO$_4$, the dimensional crossover from a network of perpendicular one-dimensional chains to a two-dimensional system due to a weak hybridization between the perpendicular chains is studied. The corresponding two-orbital Hubbard model is treated within a slave-boson mean-field theory (SBMFT) to take correlation effects into account such as the spin-charge separation on the one-dimensional chains. Using an RPA-like formulation for the Greens function of collective spinon-holon excitations the emergence of quasiparticles at low-temperatures is examined. The results are used to discuss the evolution of the spectral density and the c-axis transport within a tunneling approach. For the latter a regime change between low- and high-temperature regime is found in qualitative accordance with experimental data.
We have studied the influence of a magnetic field on the thermodynamic properties of Ca$_{2-x}$Sr$_{x}$RuO$_4$ in the intermediate metallic region with tilt and rotational distortions ($0.2leq x leq 0.5$). We find strong and anisotropic thermal expan
The alloy Ca$_{2-x}$Sr$_x$RuO$_4$ exhibits a complex phase diagram with peculiar magnetic metallic phases. In this paper some aspects of this alloy are discussed based on a mean field theory for an effective Kugel-Khomskii model of localized orbital
We derive an exact operatorial reformulation of the rotational invariant slave boson method and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to tre
Many of the exciting properties of strongly correlated materials are intricately linked to quantum critical points in their phase diagram. This includes phenomena such as high temperature superconductivity, unconventional superconductivity in heavy f
The strange metal is an enigmatic phase whose properties are irreconcilable with the established Fermi liquid theory of conductors. A fundamental question is whether a strange metal and a Fermi liquid are distinct phases of matter, or whether a mater