ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the missing band: Quasiparticle Interference of the $gamma$-band in Sr$_2$RuO$_4$

124   0   0.0 ( 0 )
 نشر من قبل Andreas Kreisel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The single-layered ruthenate Sr$_2$RuO$_4$ is one of the most enigmatic unconventional superconductors. While for many years it was thought to be the best candidate for a chiral $p$-wave superconducting ground state, desirable for topological quantum computations, recent experiments suggest a singlet state, ruling out the original $p$-wave scenario. The superconductivity as well as the properties of the multi-layered compounds of the ruthenate perovskites are strongly influenced by a van Hove singularity in proximity of the Fermi energy. Tiny structural distortions move the van Hove singularity across the Fermi energy with dramatic consequences for the physical properties. Here, we determine the electronic structure of the van Hove singularity in the surface layer of Sr$_2$RuO$_4$ by quasiparticle interference imaging. We trace its dispersion and demonstrate from a model calculation accounting for the full vacuum overlap of the wave functions that its detection is facilitated through the octahedral rotations in the surface layer.



قيم البحث

اقرأ أيضاً

We discovered a fractional Chern structure in chiral superconducting Sr$_2$RuO$_4$ nanofilms by employing electric transport. By using Sr$_2$RuO$_4$ single crystals with nanoscale thickness, a fractional Hall conductance was observed without an exter nal magnetic field. The Sr$_2$RuO$_4$ nanofilms enhanced the superconducting transition temperature to about 3 K. We found an anomalous induced voltage with temperature and thickness dependence, and the switching behavior of the induced voltage appeared when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle $theta=pi/6$ is determined by observing the topological magneto-electric effect in Sr$_2$RuO$_4$ nanofilms.
The single-layered ruthenate Sr$_2$RuO$_4$ has attracted a great deal of interest as a spin-triplet superconductor with an order parameter that may potentially break time reversal invariance and host half-quantized vortices with Majorana zero modes. While the actual nature of the superconducting state is still a matter of controversy, it has long been believed that it condenses from a metallic state that is well described by a conventional Fermi liquid. In this work we use a combination of Fourier transform scanning tunneling spectroscopy (FT-STS) and momentum resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects in the normal state of Sr$_2$RuO$_4$. Our high-resolution FT-STS data show signatures of the beta-band with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, suggesting that the normal state of Sr$_2$RuO$_4$ is that of a correlated metal where correlations are strengthened by the quasi 1D nature of the bands. In addition, kinks at energies of approximately 10meV, 38meV and 70meV are observed. By comparing STM and M-EELS data we show that the two higher energy features arise from coupling with collective modes. The strong correlation effects and the kinks in the quasi 1D bands may provide important information for understanding the superconducting state. This work opens up a unique approach to revealing the superconducting order parameter in this compound.
We report a polarization-resolved Raman spectroscopy study of the orbital dependence of the quasiparticles properties in the prototypical multi-band Fermi liquid Srtextsubscript{2}RuOtextsubscript{4}. We show that the quasiparticle scattering rate di splays $omega^{2}$ dependence as expected for a Fermi liquid. Besides, we observe a clear polarization-dependence in the energy and temperature dependence of the quasiparticle scattering rate and mass, with the $d_{xz/yz}$ orbital derived quasiparticles showing significantly more robust Fermi liquid properties than the $d_{xy}$ orbital derived ones. The observed orbital dichotomy of the quasiparticles is consistent with the picture of Srtextsubscript{2}RuOtextsubscript{4} as a Hunds metal. Our study establishes Raman scattering as a powerful probe of Fermi liquid properties in correlated metals.
We report a systematic study of electron doping of Sr2RuO4 by non-isovalent substitution of La^(3+) for Sr^(2+). Using a combination of de Haas-van Alphen oscillations, specific heat, and resistivity measurements, we show that electron doping leads t o a rigid-band shift of the Fermi level corresponding to one doped electron per La ion, with constant many-body quasiparticle mass enhancement over the band mass. The susceptibility spectrum is substantially altered and enhanced by the doping but this has surprisingly little effect on the strength of the unconventional superconducting pairing.
133 - X. F. Xu , Z. A. Xu , T. J. Liu 2008
We present the first measurement on Nernst effect in the normal state of odd-parity, spin-triplet superconductor Sr$_{2}$RuO$_{4}$. Below 100 K, the Nernst signal was found to be negative, large, and, as a function of magnetic field, nonlinear. Its m agnitude increases with the decreasing temperature until reaching a maximum around $T^*$ $approx$ 20 - 25 K, below which it starts to decrease linearly as a function of temperature. The large value of the Nernst signal appears to be related to the multiband nature of the normal state and the nonlinearity to band-dependent magnetic fluctuation in Sr$_{2}$RuO$_{4}$. We argue that the sharp decrease in Nernst signal below $T^*$ is due to the suppression of quasiparticle scattering and the emergence of band-dependent coherence in the normal state. The observation of a sharp kink in the temperature dependent thermopower around $T^*$ and a sharp drop of Hall angle at low temperatures provide additional support to this picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا