ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially uniform resistance switching of low current, high endurance titanium-niobium-oxide memristors

301   0   0.0 ( 0 )
 نشر من قبل Suhas Kumar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed micrometer-scale titanium-niobium-oxide prototype memristors, which exhibited low write-power (<3 {mu}W) and energy (<200 fJ/bit/{mu}m2), low read-power (~nW), and high endurance (>millions of cycles). To understand their physico-chemical operating mechanisms, we performed in-operando synchrotron x-ray transmission nanoscale spectromicroscopy using an ultra-sensitive time-multiplexed technique. We observed only spatially uniform material changes during cell operation, in sharp contrast to the frequently detected formation of a localized conduction channel in transition-metal-oxide memristors. We also associated the response of assigned spectral features distinctly to non-volatile storage (resistance change) and writing of information (application of voltage and Joule heating). These results provide critical insights into high-performance memristors that will aid in device design, scaling and predictive circuit-modeling, all of which are essential for the widespread deployment of successful memristor applications.



قيم البحث

اقرأ أيضاً

While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of ox ygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Here we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfOx memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information, we reengineered devices to mitigate three failure mechanisms, and demonstrated an improvement in endurance of about three orders of magnitude.
69 - J. Kim , Y. V. Pershin , M. Yin 2019
It has been suggested that all resistive-switching memory cells are memristors. The latter are hypothetical, ideal devices whose resistance, as originally formulated, depends only on the net charge that traverses them. Recently, an unambiguous test h as been proposed [J. Phys. D: Appl. Phys. {bf 52}, 01LT01 (2019)] to determine whether a given physical system is indeed a memristor or not. Here, we experimentally apply such a test to both in-house fabricated Cu-SiO2 and commercially available electrochemical metallization cells. Our results unambiguously show that electrochemical metallization memory cells are not memristors. Since the particular resistance-switching memories employed in our study share similar features with many other memory cells, our findings refute the claim that all resistance-switching memories are memristors. They also cast doubts on the existence of ideal memristors as actual physical devices that can be fabricated experimentally. Our results then lead us to formulate two memristor impossibility conjectures regarding the impossibility of building a model of physical resistance-switching memories based on the memristor model.
Kinetics of niobium and titanium carbide precipitates in iron has been simulated with cluster dynamics. The simulations, carried out in austenite and ferrite for niobium carbides, respectively in austenite for titanium carbide, were analyzed for depe ndency on temperature, solute concentration, and initial cluster distribution. The results are presented for different temperatures and solute concentrations and compared to available experimental data. They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with only monomers present a significantly different behavior than less dilute alloys or alloys with different initial cluster distribution.
Here we report the observation of extraordinary superconductivity in a pressurized commercial niobium-titanium alloy. We find that its zero-resistance superconductivity persists from ambient pressure to the pressure as high as 261.7 GPa, a record hig h pressure up to which a known superconducting state can continuously survives. Remarkably, at such an ultra-high pressure, although the ambient pressure volume is shrunk by 45% without structural phase transition, the superconducting transition temperature (TC) increases to ~19.1 K from ~9.6 K, and the critical magnetic field (HC2) at 1.8 K has been enhanced to 19 T from 15.4 T. These results set new records for both of the TC and the HC2 among all the known alloy superconductors composed of only transition metal elements. The remarkable high pressure superconducting properties observed in the NbTi alloy not only expand our knowledge on this important commercial superconductor but also are helpful for a better understanding on the superconducting mechanism.
We present molecular-dynamic simulations of memory resistors (memristors) including the crystal field effects on mobile ionic species such as oxygen vacancies appearing during operation of the device. Vacancy distributions show different patterns dep ending on the ratio of a spatial period of the crystal field to a characteristic radius of the vacancy-vacancy interaction. There are signatures of the orientational order and of spatial voids in the vacancy distributions for some crystal field potentials. The crystal field stabilizes the patterns after they are formed, resulting in a non-volatile switching of the simulated devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا