ﻻ يوجد ملخص باللغة العربية
We analyzed micrometer-scale titanium-niobium-oxide prototype memristors, which exhibited low write-power (<3 {mu}W) and energy (<200 fJ/bit/{mu}m2), low read-power (~nW), and high endurance (>millions of cycles). To understand their physico-chemical operating mechanisms, we performed in-operando synchrotron x-ray transmission nanoscale spectromicroscopy using an ultra-sensitive time-multiplexed technique. We observed only spatially uniform material changes during cell operation, in sharp contrast to the frequently detected formation of a localized conduction channel in transition-metal-oxide memristors. We also associated the response of assigned spectral features distinctly to non-volatile storage (resistance change) and writing of information (application of voltage and Joule heating). These results provide critical insights into high-performance memristors that will aid in device design, scaling and predictive circuit-modeling, all of which are essential for the widespread deployment of successful memristor applications.
While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of ox
It has been suggested that all resistive-switching memory cells are memristors. The latter are hypothetical, ideal devices whose resistance, as originally formulated, depends only on the net charge that traverses them. Recently, an unambiguous test h
Kinetics of niobium and titanium carbide precipitates in iron has been simulated with cluster dynamics. The simulations, carried out in austenite and ferrite for niobium carbides, respectively in austenite for titanium carbide, were analyzed for depe
Here we report the observation of extraordinary superconductivity in a pressurized commercial niobium-titanium alloy. We find that its zero-resistance superconductivity persists from ambient pressure to the pressure as high as 261.7 GPa, a record hig
We present molecular-dynamic simulations of memory resistors (memristors) including the crystal field effects on mobile ionic species such as oxygen vacancies appearing during operation of the device. Vacancy distributions show different patterns dep