ﻻ يوجد ملخص باللغة العربية
Here we report the observation of extraordinary superconductivity in a pressurized commercial niobium-titanium alloy. We find that its zero-resistance superconductivity persists from ambient pressure to the pressure as high as 261.7 GPa, a record high pressure up to which a known superconducting state can continuously survives. Remarkably, at such an ultra-high pressure, although the ambient pressure volume is shrunk by 45% without structural phase transition, the superconducting transition temperature (TC) increases to ~19.1 K from ~9.6 K, and the critical magnetic field (HC2) at 1.8 K has been enhanced to 19 T from 15.4 T. These results set new records for both of the TC and the HC2 among all the known alloy superconductors composed of only transition metal elements. The remarkable high pressure superconducting properties observed in the NbTi alloy not only expand our knowledge on this important commercial superconductor but also are helpful for a better understanding on the superconducting mechanism.
The niobium rich selenide compound Nb5Se4 was synthesized at ambient pressure by high-temperature solid-state reaction in a sealed Ta tube. Resistivity and heat capacity measurements reveal that this compound is superconducting, with a T_c = 1.85K. T
NbSe$_{2}$ and NbS$_{2}$ are isostructural two-dimensional materials that exhibit contrasting superconducting properties when reduced to the single monolayer limit. Monolayer NbSe$_{2}$ is an Ising superconductor, while there have been no reports of
The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Andersons theorem. Destruction o
Research on high-entropy-alloy (HEA) superconductors is a growing field in material science. In this study, we explored new HEA-type superconductors and discovered a CuAl2-type superconductor Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a HEA-type transition me
The superconducting critical temperature (Tc > 15K) of niobium titanium nitride (NbTiN) thin films allows for low-loss circuits up to 1.1 THz, enabling on-chip spectroscopy and multi-pixel imaging with advanced detectors. The drive for large scale de