ترغب بنشر مسار تعليمي؟ اضغط هنا

Record-High Superconductivity in Niobium-Titanium Alloy

77   0   0.0 ( 0 )
 نشر من قبل Liling Sun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we report the observation of extraordinary superconductivity in a pressurized commercial niobium-titanium alloy. We find that its zero-resistance superconductivity persists from ambient pressure to the pressure as high as 261.7 GPa, a record high pressure up to which a known superconducting state can continuously survives. Remarkably, at such an ultra-high pressure, although the ambient pressure volume is shrunk by 45% without structural phase transition, the superconducting transition temperature (TC) increases to ~19.1 K from ~9.6 K, and the critical magnetic field (HC2) at 1.8 K has been enhanced to 19 T from 15.4 T. These results set new records for both of the TC and the HC2 among all the known alloy superconductors composed of only transition metal elements. The remarkable high pressure superconducting properties observed in the NbTi alloy not only expand our knowledge on this important commercial superconductor but also are helpful for a better understanding on the superconducting mechanism.

قيم البحث

اقرأ أيضاً

The niobium rich selenide compound Nb5Se4 was synthesized at ambient pressure by high-temperature solid-state reaction in a sealed Ta tube. Resistivity and heat capacity measurements reveal that this compound is superconducting, with a T_c = 1.85K. T he electronic contribution to the specific heat {gamma} and the Debye temperature are found to be 18.1 mJ/mol/K^2 and 298 K respectively. The calculated electron-phonon coupling constant {lambda}_ep = 0.5 and the {Delta}C_p/{gamma}Tc = 1.42 ratio imply that Nb5Se4 is a weak coupling BCS superconductor. The upper critical field and coherence length are found to be 1.44 T and 15.1 nm, respectively.
NbSe$_{2}$ and NbS$_{2}$ are isostructural two-dimensional materials that exhibit contrasting superconducting properties when reduced to the single monolayer limit. Monolayer NbSe$_{2}$ is an Ising superconductor, while there have been no reports of superconductivity in monolayer NbS$_{2}$. NbS$_{x}$Se$_{2-x}$ alloys exhibit an intriguing non-monotonic dependence of the superconducting transition temperature with sulfur content, which has been interpreted as a manifestation of fractal superconductivity. However, several key questions about this result are not known: (1) Does the electronic structure of the alloy differ from the parent compounds, (2) Are spin fluctuations which have been shown to be prominent in monolayer NbSe$_{2}$ also present in the alloys? Using first-principles calculations, we show that the density of states at the Fermi level and the proximity to magnetism in NbS$_{x}$Se$_{2-x}$ alloys are both reduced compared to the parent compound; the former would decrease the transition temperature while the latter would increase it. We also show that Se vacancies, which are likely magnetic pair-breaking defects, may form in large concentrations in NbSe$_{2}$. Based on our results, we suggest an alternative explanation of the non-monotonic behavior the superconducting transition temperature in NbS$_{x}$Se$_{2-x}$ alloys, which does not require the conjecture of multifractality.
The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Andersons theorem. Destruction o f superconductivity and even superconductor-insulator transitions occur in the regime of strong disorder. Hence disorder-enhanced superconductivity is rare and has only been observed in some alloys or granular states. Because of the entanglement of various effects, the mechanism of enhancement is still under debate. Here we report well-controlled disorder effect in the recently discovered monolayer NbSe$_2$ superconductor. The superconducting transition temperatures of NbSe$_2$ monolayers are substantially increased by disorder. Realistic theoretical modeling shows that the unusual enhancement possibly arises from the multifractality of electron wave functions. This work provides the first experimental evidence of the multifractal superconducting state.
Research on high-entropy-alloy (HEA) superconductors is a growing field in material science. In this study, we explored new HEA-type superconductors and discovered a CuAl2-type superconductor Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a HEA-type transition me tal site. A superconducting transition was observed at 8.0 K after electrical resistivity, magnetization, and specific heat measurements. The bulk characteristics of the superconductivity were confirmed through the specific heat measurements. The discovery of superconductivity in HEA-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 will provide a novel pathway to explore new HEA-type superconductors and investigate the relationship between the mixing entropy and superconductivity of HEA-type compounds.
The superconducting critical temperature (Tc > 15K) of niobium titanium nitride (NbTiN) thin films allows for low-loss circuits up to 1.1 THz, enabling on-chip spectroscopy and multi-pixel imaging with advanced detectors. The drive for large scale de tector microchips is demanding NbTiN films with uniform properties over an increasingly larger area. This article provides an experimental comparison between two reactive d.c. sputter systems with different target sizes: a small target (100mm diameter) and a large target (127 mm x 444.5 mm). This article focuses on maximizing the Tc of the films and the accompanying I-V characteristics of the sputter plasma, and we find that both systems are capable of depositing films with Tc > 15 K. The resulting film uniformity is presented in a second manuscript in this volume. We find that these films are deposited within the transition from metallic to compound sputtering, at the point where target nitridation most strongly depends on nitrogen flow. Key in the deposition optimization is to increase the systems pumping speed and gas flows to counteract the hysteretic effects induced by the target size. Using the I-V characteristics as a guide proves to be an effective way to optimize a reactive sputter system, for it can show whether the optimal deposition regime is hysteresis-free and accessible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا