ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster Dynamics Modeling of Niobium and Titanium Carbide Precipitates

50   0   0.0 ( 0 )
 نشر من قبل Nadezda Korepanova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kinetics of niobium and titanium carbide precipitates in iron has been simulated with cluster dynamics. The simulations, carried out in austenite and ferrite for niobium carbides, respectively in austenite for titanium carbide, were analyzed for dependency on temperature, solute concentration, and initial cluster distribution. The results are presented for different temperatures and solute concentrations and compared to available experimental data. They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with only monomers present a significantly different behavior than less dilute alloys or alloys with different initial cluster distribution.

قيم البحث

اقرأ أيضاً

We analyzed micrometer-scale titanium-niobium-oxide prototype memristors, which exhibited low write-power (<3 {mu}W) and energy (<200 fJ/bit/{mu}m2), low read-power (~nW), and high endurance (>millions of cycles). To understand their physico-chemical operating mechanisms, we performed in-operando synchrotron x-ray transmission nanoscale spectromicroscopy using an ultra-sensitive time-multiplexed technique. We observed only spatially uniform material changes during cell operation, in sharp contrast to the frequently detected formation of a localized conduction channel in transition-metal-oxide memristors. We also associated the response of assigned spectral features distinctly to non-volatile storage (resistance change) and writing of information (application of voltage and Joule heating). These results provide critical insights into high-performance memristors that will aid in device design, scaling and predictive circuit-modeling, all of which are essential for the widespread deployment of successful memristor applications.
Here we report the observation of extraordinary superconductivity in a pressurized commercial niobium-titanium alloy. We find that its zero-resistance superconductivity persists from ambient pressure to the pressure as high as 261.7 GPa, a record hig h pressure up to which a known superconducting state can continuously survives. Remarkably, at such an ultra-high pressure, although the ambient pressure volume is shrunk by 45% without structural phase transition, the superconducting transition temperature (TC) increases to ~19.1 K from ~9.6 K, and the critical magnetic field (HC2) at 1.8 K has been enhanced to 19 T from 15.4 T. These results set new records for both of the TC and the HC2 among all the known alloy superconductors composed of only transition metal elements. The remarkable high pressure superconducting properties observed in the NbTi alloy not only expand our knowledge on this important commercial superconductor but also are helpful for a better understanding on the superconducting mechanism.
The critical resolved shear stress of an Al 4 wt. % Cu alloy containing a homogeneous distribution of $theta$ precipitates was determined by means of dislocation dynamics simulations. The size distribution, shape, orientation and volume fraction of t he precipitates in the alloy were obtained from transmission electron microscopy observations while the parameters controlling the dislocation/precipitate interactions (elastic mismatch, transformation strains, dislocation mobility and cross-slip probability, etc.) were calculated from atomistic simulations. The precipitates were assumed to be either impenetrable or shearable by the dislocations, the latter characterized by a threshold shear stress that has to be overcome to shear the precipitate. The predictions of the simulations in terms of the critical resolved shear stress and of the dislocation/precipitate interaction mechanisms were in good agreement with the experimental results. It was concluded that the optimum strength of this alloy is attained with a homogeneous distribution of $theta$ precipitates whose average size ($approx$ 40 nm) is at the transition between precipitate shearing and looping. Overall, the dislocation dynamics strategy presented in this paper is able to provide quantitative predictions of precipitate strengthening in metallic alloys.
A unified model of molecular and atomistic spin dynamics is presented enabling simulations both in microcanonical and canonical ensembles without the necessity of additional phenomenological spin damping. Transfer of energy and angular momentum betwe en the lattice and the spin systems is achieved by a coupling term based upon the spin-orbit interaction. The characteristic spectra of the spin and phonon systems are analyzed for different coupling strength and temperatures. The spin spectral density shows magnon modes together with the uncorrelated noise induced by the coupling to the lattice. The effective damping parameter is investigated showing an increase with both coupling strength and temperature. The model paves the way to understanding magnetic relaxation processes beyond the phenomenological approach of the Gilbert damping and the dynamics of the energy transfer between lattice and spins.
The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are of ten tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا