ﻻ يوجد ملخص باللغة العربية
Dielectric resonators are employed to build state-of-the-art low-noise and high- stability oscillators operating at room and cryogenic temperatures. A resonator temperature coefficient of frequency is one criterion of performance. This paper reports on predictions and measurements of this temperature coefficient of frequency for three types of cylindrically-symmetric Bragg resonators operated at microwave frequencies. At room temperature, microwave Bragg resonators have the best potential to reach extremely high Q-factors. Research has been conducted over the last decade on modeling, optimizing and realizing such high Q-factor devices for applications such as filtering, sensing, and frequency metrology. We present an optimized design, which has a temperature sensitivity 2 to 4 times less than current whispering gallery mode resonators without using temperature compensating techniques and about 30% less than other existing Bragg resonators. Also, the performance of a new generation single-layered Bragg resonators, based on a hybrid-Bragg-mode, is reported with a sensitivity of about -12ppm/K at 295K. For a single reflector resonator, it achieves a similar level of performance as a double-Bragg-reflector resonator but with a more compact structure and performs six times better than whispering-gallery-mode resonators. The hybrid resonator promises to deliver a new generation of high-sensitivity sensors and high-stability room-temperature oscillators.
Photon detection with quantum-level sensitivity is particularly challenging in the terahertz regime (0.1-10 THz), which contains ~98% of all the photons existing in the universe. Near-quantum-limited terahertz spectrometry has so far only been possib
Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due
A new generation of cryogenic light detectors exploiting Neganov-Luke effect to enhance the thermal signal has been used to detect the Cherenkov light emitted by the electrons interacting in TeO$_{2}$ crystals. With this mechanism a high significance
We report on the evaluation of microwave frequency synthesis using two cryogenic sapphire oscillators developed at the University of Western Australia. A down converter is used to make comparisons between microwave clocks at different frequencies, wh
The phase noise and frequency stability measurements of 1 GHz, 100 MHz, and 10 MHz signals are presented which have been synthesized from microwave cryogenic sapphire oscillators using ultra-low-vibration pulse-tube cryocooler technology. We present