ترغب بنشر مسار تعليمي؟ اضغط هنا

Room Temperature Terahertz Spectrometer with Quantum-Level Sensitivity

92   0   0.0 ( 0 )
 نشر من قبل Mona Jarrahi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photon detection with quantum-level sensitivity is particularly challenging in the terahertz regime (0.1-10 THz), which contains ~98% of all the photons existing in the universe. Near-quantum-limited terahertz spectrometry has so far only been possible through the use of cryogenically cooled superconducting mixers as frequency downconverters. Here we introduce a spectrometry scheme that uses plasmonic photomixing for frequency downconversion to offer quantum-level sensitivities at room temperature for the first time. Frequency downconversion is achieved by mixing terahertz radiation and a heterodyning optical beam with a terahertz beat frequency in a plasmonics-enhanced semiconductor active region. We demonstrate spectrometer sensitivities down to 3 times the quantum-limit at room temperature. With a versatile design capable of broadband spectrometry, this plasmonic photomixer has broad applicability to quantum optics, chemical sensing, biological studies, medical diagnosis, high data-rate communication, as well as astronomy and atmospheric studies.



قيم البحث

اقرأ أيضاً

Fast, room temperature imaging at THz and sub-THz frequencies is an interesting feature which could unleash the full potential of plenty applications in security, healthcare and industrial production. In this Letter we introduce micromechanical bolom eters based on silicon nitride trampoline membranes as broad-range detectors, down to the sub-THz frequencies. They show, at the largest wavelengths, room-temperature noise-equivalent-powers comparable to state-of-the-art commercial devices (~100 pW Hz-1/2); adding the good operation speed and the easy, large-scale fabrication process, the trampoline membrane could be the next candidate for cheap, room temperature THz imaging and related applications.
Near-field imaging with terahertz (THz) waves is emerging as a powerful technique for fundamental research in photonics and across physical and life sciences. Spatial resolution beyond the diffraction limit can be achieved by collecting THz waves fro m an object through a small aperture placed in the near-field. However, light transmission through a sub-wavelength size aperture is fundamentally limited by the wave nature of light. Here, we conceive a novel architecture that exploits inherently strong evanescent THz field arising within the aperture to mitigate the problem of vanishing transmission. The sub-wavelength aperture is originally coupled to asymmetric electrodes, which activate the thermo-electric THz detection mechanism in a transistor channel made of flakes of black-phosphorus or InAs nanowires. The proposed novel THz near-field probes enable room-temperature sub-wavelength resolution coherent imaging with a 3.4 THz quantum cascade laser, paving the way to compact and versatile THz imaging systems and promising to bridge the gap in spatial resolution from the nanoscale to the diffraction limit.
A general-purpose all-fiber spectrometer is demonstrated to overcome the trade-off between spectral resolution and bandwidth. By integrating a wavelength division multiplexer with five multimode optical fibers, we have achieved 100 nm bandwidth with 0.03 nm resolution at wavelength 1500 nm. An efficient algorithm is developed to reconstruct the spectrum from the speckle pattern produced by interference of guided modes in the multimode fibers. Such algorithm enables a rapid, accurate reconstruction of both sparse and dense spectra in the presence of noise.
Dielectric resonators are employed to build state-of-the-art low-noise and high- stability oscillators operating at room and cryogenic temperatures. A resonator temperature coefficient of frequency is one criterion of performance. This paper reports on predictions and measurements of this temperature coefficient of frequency for three types of cylindrically-symmetric Bragg resonators operated at microwave frequencies. At room temperature, microwave Bragg resonators have the best potential to reach extremely high Q-factors. Research has been conducted over the last decade on modeling, optimizing and realizing such high Q-factor devices for applications such as filtering, sensing, and frequency metrology. We present an optimized design, which has a temperature sensitivity 2 to 4 times less than current whispering gallery mode resonators without using temperature compensating techniques and about 30% less than other existing Bragg resonators. Also, the performance of a new generation single-layered Bragg resonators, based on a hybrid-Bragg-mode, is reported with a sensitivity of about -12ppm/K at 295K. For a single reflector resonator, it achieves a similar level of performance as a double-Bragg-reflector resonator but with a more compact structure and performs six times better than whispering-gallery-mode resonators. The hybrid resonator promises to deliver a new generation of high-sensitivity sensors and high-stability room-temperature oscillators.
158 - U. Sassi , R. Parret , S. Nanot 2016
Graphene is ideally suited for photonic and optoelectronic applications, with a variety of photodetectors (PDs) in the visible, near-infrared (NIR), and THz reported to date, as well as thermal detectors in the mid-infrared (MIR). Here, we present a room temperature-MIR-PD where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene, leading to a temperature coefficient of resistance up to 900%/K, two orders of magnitude higher than the state of the art, for a device area of 300x300um2. This is achieved by fabricating a floating metallic structure that concentrates the charge generated by the pyroelectric substrate on the top-gate capacitor of the graphene channel. This allows us to resolve temperature variations down to 15umK at 1 Hz, paving the way for a new generation of detectors for MIR imaging and spectroscopy
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا