ﻻ يوجد ملخص باللغة العربية
The phase noise and frequency stability measurements of 1 GHz, 100 MHz, and 10 MHz signals are presented which have been synthesized from microwave cryogenic sapphire oscillators using ultra-low-vibration pulse-tube cryocooler technology. We present the measured data using independent cryogenic oscillators for the 100 MHz and 10 MHz synthesized signals, whereas previously we only estimated the expected results based on residual phase noise measurements, when only one cryogenic oscillator was available. In addition we present the design of a 1 GHz synthesizer using a Crystek voltage controlled oscillator phase locked to 1 GHz output derived from a cryogenic sapphire oscillator.
We carried out a 26-day comparison of five simultaneously operated optical clocks and six atomic fountain clocks located at INRIM, LNE-SYRTE, NPL and PTB by using two satellite-based frequency comparison techniques: broadband Two-Way Satellite Time a
In the paper, a comparison is described of the microwave power standard based on thermoelectric sensors against an analogous standard based on bolometric sensors. Measurements have been carried out with the classical twin-type microcalorimeter, fitte
We have re-analyzed the stability of pulse arrival times from pulsars and white dwarfs using several analysis tools for measuring the noise characteristics of sampled time and frequency data. We show that the best terrestrial artificial clocks substa
We report on the realization of a novel fiber-optic radio frequency (RF) transfer scheme with the bidirectional frequency division multiplexing (FDM) dissemination technique. Here, the proper bidirectional frequency map used in the forward and backwa
Two nominally identical ultra-stable cryogenic microwave oscillators are compared. Each incorporates a dielectric-sapphire resonator cooled to near 6 K in an ultra-low vibration cryostat using a low-vibration pulse-tube cryocooler. The phase noise fo