ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the Population of Bright Infrared Sources in the Small Magellanic Cloud

172   0   0.0 ( 0 )
 نشر من قبل Kathleen Kraemer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We used Spitzers Infrared Spectrograph (IRS) to observe stars in the Small Magellanic Cloud (SMC) selected from the Midcourse Space Experiment (MSX) Point Source Catalog. We concentrate on the dust properties of oxygen-rich evolved stars, which show less alumina than Galactic stars. This difference may arise from the SMCs lower metallicity, but it could be a selection effect: the SMC sample includes more stars which are brighter and thus more massive. The distribution of SMC stars along the silicate sequence looks more like that of Galactic red supergiants than asymptotic giant branch stars (AGBs). While many are definitively AGBs, several SMC stars show evidence of hot bottom burning. Other sources show mixed chemistry (oxygen-rich and carbon-rich features), including supergiants with PAH emission. MSX SMC 134 may be the first confirmed silicate/carbon star in the SMC, and MSX SMC 049 is a post-AGB candidate. MSX SMC 145, previously a candidate OH/IR star, is actually an AGB star with a background galaxy at z=0.16 along the same line-of-sight. We consider the overall characteristics of all the {em MSX} sources, the most infrared-bright objects in the SMC, in light of {em Spitzer}s higher sensitivity and resolution, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the James Webb Space Telescope (JWST). Color-color diagrams using the IRS spectra and JWST mid-infrared filters show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different YSO classes.

قيم البحث

اقرأ أيضاً

We model the present day, observable, normal radio pulsar population of the Small Magellanic Cloud (SMC). The pulsars are generated with SeBa, a binary population synthesis code that evolves binaries and the constituent stellar objects up to remnant formation and beyond. We define radio pulsars by selecting neutron stars that satisfy a selection of criteria defined by Galactic pulsars, and apply the detection thresholds of previous and future SMC pulsar surveys.The number of synthesised and recovered pulsars are exceptionally sensitive to the assumed star formation history and applied radio luminosity model, but is not affected extensively by the assumed common envelope model, metallicity, and neutron star kick velocity distribution. We estimate that the SMC formed (1.6$pm$0.3)$times 10^4$ normal pulsars during the last 100 Myrs. We study which pulsars could have been observed by the Parkes multibeam survey of the SMC, by applying the surveys specific selection effects, and recover 4.0$pm$0.8 synthetic pulsars.This is in agreement with their five observed pulsars. We also apply a proposed MeerKAT configuration for the upcoming SMC survey, and predict that the MeerKAT survey will detect 17.2$pm$2.5 pulsars.
141 - Yoshifusa Ita 2018
A very long term near-infrared variable star survey towards the Large and Small Magellanic Clouds was carried out using the 1.4m InfraRed Survey Facility at the South African Astronomical Observatory. This project was initiated in December 2000 in th e LMC, and in July 2001 in the SMC. Since then an area of 3 square degrees along the bar in the LMC and an area of 1 square degree in the central part of the SMC have been repeatedly observed. This survey is ongoing, but results obtained with data taken until December 2017 are reported in this paper. Over more than 15 years we have observed the two survey areas more than one hundred times. This is the first survey that provides near-infrared time-series data with such a long time baseline and on such a large scale. This paper describes the observations in the SMC and publishes a point source photometric catalogue, a variable source catalogue, and time-series data.
We present observations of the most bright main sequence stars in the Small Magellanic Cloud stellar cluster NGC330 obtained with the integral field spectrograph MUSE@VLT. The use of this valuable instrument allows us to study both photometric and sp ectroscopic properties of stellar populations of this young star cluster. The photometric data provide us a precise color magnitude diagram, which seems to support the presence of two stellar populations of ages of $sim$ 18 Myr and $sim$ 30 Myr assuming a metallicity of Z = 0.002. Thanks to the spectroscopic data, we derive helium abundance of 10 main sequence stars within the effective radius Reff= 20 of NGC330, thus leading to an estimation of $epsilon(He)$ = 10.93 $pm$ 0.05 (1$sigma$ ). The helium elemental abundances of stars likely belonging to the two possible stellar populations, do not show differences or dichotomy within the uncertainties. Thus, our results suggest that the two stellar populations of NGC330, if they exist, share similar original He abundances. If we consider stellar rotation velocity in our analysis, a coeval (30 Myr) stellar population, experiencing different values of rotation, cannot be excluded. In this case, the mean helium abundance < $epsilon(He)$ >rot obtained in our analysis is 11.00 $pm$ 0.05 dex. We also verified that possible NLTE effects cannot be identified with our analysis because of the spectral resolution and they are within our derived abundance He uncertainties. Moreover, the analysis of the He abundance as a function of the distance from the cluster center of the observed stars do not show any correlation.
69 - Joshua D. Simon 2006
We have imaged the entire Small Magellanic Cloud (SMC), one of the two nearest star-forming dwarf galaxies, in all seven IRAC and MIPS bands. The low mass and low metallicity (1/6 solar) of the SMC make it the best local analog for primitive galaxies at high redshift. By studying the properties of dust and star formation in the SMC at high resolution, we can gain understanding of similar distant galaxies that can only be observed in much less detail. In this contribution, we present a preliminary analysis of the properties of point sources detected in the Spitzer Survey of the Small Magellanic Cloud (S^3MC). We find ~400,000 unresolved or marginally resolved sources in our IRAC images, and our MIPS 24 micron mosaic contains ~17,000 point sources. Source counts decline rapidly at the longer MIPS wavelengths. We use color-color and color-magnitude diagrams to investigate the nature of these objects, cross-correlate their positions with those of known sources at other wavelengths, and show examples of how these data can be used to identify interesting classes of objects such as carbon stars and young stellar objects. For additional examples of some of the questions that can be studied with these data, please see the accompanying contributions by the other members of our team. The mosaic images and point source catalogs we have made have been released to the public on our website (http://celestial.berkeley.edu/spitzer).
[abridged] We present 52-93 micron spectra obtained with Spitzer in the MIPS-SED mode, of a representative sample of luminous compact far-IR sources in the LMC. These include carbon stars, OH/IR AGB stars, post-AGB objects and PNe, RCrB-type star HV2 671, OH/IR red supergiants WOHG064 and IRAS05280-6910, B[e] stars IRAS04530-6916, R66 and R126, Wolf-Rayet star Brey3a, Luminous Blue Variable R71, supernova remnant N49, a large number of young stellar objects, compact HII regions and molecular cores, and a background galaxy (z~0.175). We use the spectra to constrain the presence and temperature of cold dust and the excitation conditions and shocks within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding ISM. Evolved stars, including LBV R71, lack cold dust except in some cases where we argue that this is swept-up ISM. This leads to an estimate of the duration of the prolific dust-producing phase (superwind) of several thousand years for both RSGs and massive AGB stars, with a similar fractional mass loss experienced despite the different masses. We tentatively detect line emission from neutral oxygen in the extreme RSG WOHG064, with implications for the wind driving. In N49, the shock between the supernova ejecta and ISM is revealed by its strong [OI] 63-micron emission and possibly water vapour; we estimate that 0.2 Msun of ISM dust was swept up. Some of the compact HII regions display pronounced [OIII] 88-micron emission. The efficiency of photo-electric heating in the interfaces of ionized gas and molecular clouds is estimated at 0.1-0.3%. We confirm earlier indications of a low nitrogen content in the LMC. Evidence for solid state emission features is found in both young and evolved object; some of the YSOs are found to contain crystalline water ice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا