ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spitzer Space Telescope far-infrared spectral atlas of compact sources in the Magellanic Clouds. I. The Large Magellanic Cloud

180   0   0.0 ( 0 )
 نشر من قبل Jacco van Loon
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[abridged] We present 52-93 micron spectra obtained with Spitzer in the MIPS-SED mode, of a representative sample of luminous compact far-IR sources in the LMC. These include carbon stars, OH/IR AGB stars, post-AGB objects and PNe, RCrB-type star HV2671, OH/IR red supergiants WOHG064 and IRAS05280-6910, B[e] stars IRAS04530-6916, R66 and R126, Wolf-Rayet star Brey3a, Luminous Blue Variable R71, supernova remnant N49, a large number of young stellar objects, compact HII regions and molecular cores, and a background galaxy (z~0.175). We use the spectra to constrain the presence and temperature of cold dust and the excitation conditions and shocks within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding ISM. Evolved stars, including LBV R71, lack cold dust except in some cases where we argue that this is swept-up ISM. This leads to an estimate of the duration of the prolific dust-producing phase (superwind) of several thousand years for both RSGs and massive AGB stars, with a similar fractional mass loss experienced despite the different masses. We tentatively detect line emission from neutral oxygen in the extreme RSG WOHG064, with implications for the wind driving. In N49, the shock between the supernova ejecta and ISM is revealed by its strong [OI] 63-micron emission and possibly water vapour; we estimate that 0.2 Msun of ISM dust was swept up. Some of the compact HII regions display pronounced [OIII] 88-micron emission. The efficiency of photo-electric heating in the interfaces of ionized gas and molecular clouds is estimated at 0.1-0.3%. We confirm earlier indications of a low nitrogen content in the LMC. Evidence for solid state emission features is found in both young and evolved object; some of the YSOs are found to contain crystalline water ice.



قيم البحث

اقرأ أيضاً

We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3-24 microns in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/Lo>=4) and the rare, dusty progenitors of the new class of optical transients (e.g. SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
141 - Yoshifusa Ita 2018
A very long term near-infrared variable star survey towards the Large and Small Magellanic Clouds was carried out using the 1.4m InfraRed Survey Facility at the South African Astronomical Observatory. This project was initiated in December 2000 in th e LMC, and in July 2001 in the SMC. Since then an area of 3 square degrees along the bar in the LMC and an area of 1 square degree in the central part of the SMC have been repeatedly observed. This survey is ongoing, but results obtained with data taken until December 2017 are reported in this paper. Over more than 15 years we have observed the two survey areas more than one hundred times. This is the first survey that provides near-infrared time-series data with such a long time baseline and on such a large scale. This paper describes the observations in the SMC and publishes a point source photometric catalogue, a variable source catalogue, and time-series data.
666 - Mikako Matsuura 2014
This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme. We found that five post-AGB stars showed a broad feature with a peak at 7.7 micron, that had not been classified before. Further, the 10--13 micron PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 micron rather than two distinct sharp peaks at 11.3 and 12.7 micron, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to PNe, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars.
We used Spitzers Infrared Spectrograph (IRS) to observe stars in the Small Magellanic Cloud (SMC) selected from the Midcourse Space Experiment (MSX) Point Source Catalog. We concentrate on the dust properties of oxygen-rich evolved stars, which show less alumina than Galactic stars. This difference may arise from the SMCs lower metallicity, but it could be a selection effect: the SMC sample includes more stars which are brighter and thus more massive. The distribution of SMC stars along the silicate sequence looks more like that of Galactic red supergiants than asymptotic giant branch stars (AGBs). While many are definitively AGBs, several SMC stars show evidence of hot bottom burning. Other sources show mixed chemistry (oxygen-rich and carbon-rich features), including supergiants with PAH emission. MSX SMC 134 may be the first confirmed silicate/carbon star in the SMC, and MSX SMC 049 is a post-AGB candidate. MSX SMC 145, previously a candidate OH/IR star, is actually an AGB star with a background galaxy at z=0.16 along the same line-of-sight. We consider the overall characteristics of all the {em MSX} sources, the most infrared-bright objects in the SMC, in light of {em Spitzer}s higher sensitivity and resolution, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the James Webb Space Telescope (JWST). Color-color diagrams using the IRS spectra and JWST mid-infrared filters show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different YSO classes.
We use the star formation history map of the Large Magellanic Cloud to study the sites of the eight smallest (and presumably youngest) supernova remnants in the Cloud: SN 1987A, N158A, N49, and N63A (core collapse remnants), 0509-67.5, 0519-69.0, N10 3B, and DEM L71 (Type Ia remnants). The local star formation histories provide unique insights into the nature of the supernova progenitors, which we compare with the properties of the supernova explosions derived from the remnants themselves and from supernova light echoes. We find that all the core collapse supernovae that we have studied are associated with vigorous star formation in the recent past. Stars more massive than 21.5Msun are very scarce around SNR N49, implying that the magnetar SGR 0526-66 in this SNR was either formed elsewhere or came from a progenitor with a mass well below the 30Msun threshold suggested in the literature. Three of our four Ia SNRs are associated with old, metal poor stellar populations. This includes SNR 0509-67.5, which is known to have been originated by an extremely bright Type Ia event, and yet is located very far away from any sites of recent star formation, in a population with a mean age of 7.9 Gyr. The Type Ia SNR N103B, on the other hand, is associated with recent star formation, and might have had a relatively younger and more massive progenitor with substantial mass loss before the explosion. We discuss these results in the context of our present understanding of core collapse and Type Ia supernova progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا