ترغب بنشر مسار تعليمي؟ اضغط هنا

MUSE observations of NGC330 in the Small Magellanic Cloud. Helium abundance of bright main sequence stars

100   0   0.0 ( 0 )
 نشر من قبل Roberta Carini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of the most bright main sequence stars in the Small Magellanic Cloud stellar cluster NGC330 obtained with the integral field spectrograph MUSE@VLT. The use of this valuable instrument allows us to study both photometric and spectroscopic properties of stellar populations of this young star cluster. The photometric data provide us a precise color magnitude diagram, which seems to support the presence of two stellar populations of ages of $sim$ 18 Myr and $sim$ 30 Myr assuming a metallicity of Z = 0.002. Thanks to the spectroscopic data, we derive helium abundance of 10 main sequence stars within the effective radius Reff= 20 of NGC330, thus leading to an estimation of $epsilon(He)$ = 10.93 $pm$ 0.05 (1$sigma$ ). The helium elemental abundances of stars likely belonging to the two possible stellar populations, do not show differences or dichotomy within the uncertainties. Thus, our results suggest that the two stellar populations of NGC330, if they exist, share similar original He abundances. If we consider stellar rotation velocity in our analysis, a coeval (30 Myr) stellar population, experiencing different values of rotation, cannot be excluded. In this case, the mean helium abundance < $epsilon(He)$ >rot obtained in our analysis is 11.00 $pm$ 0.05 dex. We also verified that possible NLTE effects cannot be identified with our analysis because of the spectral resolution and they are within our derived abundance He uncertainties. Moreover, the analysis of the He abundance as a function of the distance from the cluster center of the observed stars do not show any correlation.

قيم البحث

اقرأ أيضاً

The color-magnitude diagrams (CMDs) of young star clusters show that, particularly at ultraviolet wavelengths, their upper main sequences (MSs) bifurcate into a sequence comprising the bulk population and a blue periphery. The spatial distribution of stars is crucial to understand the reasons for these distinct stellar populations. This study uses high-resolution photometric data obtained with the Hubble Space Telescope to study the spatial distributions of the stellar populations in seven Magellanic Cloud star clusters. The cumulative radial number fractions of blue stars within four clusters are strongly anti-correlated with those of the high-mass-ratio binaries in the bifurcated region, with negative Pearson coefficients < -0.7. Those clusters generally are young or in an early dynamical evolutionary stage. In addition, a supporting N-body simulation suggests the increasing percentage of blue-MS stars from the cluster centers to their outskirts may be associated with the dissolution of soft binaries. This study provides a different perspective to explore the MS bimodalities in young clusters and adds extra puzzles. A more comprehensive study combined with detailed simulations is needed in the future.
Using observations from the {em Herschel} Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds, we have found thirty five evolved stars and stellar end products that are bright in the far-infrared. These twenty eight (LMC) and seven (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found thirteen low- to intermediate mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae and a symbiotic star. We also identify ten high mass stars, including four of the fifteen known B[e] stars in the Magellanic Clouds, three extreme red supergiants which are highly enshrouded by dust, a Luminous Blue Variable, a Wolf-Rayet star and two supernova remnants. Further, we report the detection of nine probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the Magellanic Clouds. The {em Herschel} emission may either be due to dust produced by the evolved star or it may arise from swept-up ISM material.
We used Spitzers Infrared Spectrograph (IRS) to observe stars in the Small Magellanic Cloud (SMC) selected from the Midcourse Space Experiment (MSX) Point Source Catalog. We concentrate on the dust properties of oxygen-rich evolved stars, which show less alumina than Galactic stars. This difference may arise from the SMCs lower metallicity, but it could be a selection effect: the SMC sample includes more stars which are brighter and thus more massive. The distribution of SMC stars along the silicate sequence looks more like that of Galactic red supergiants than asymptotic giant branch stars (AGBs). While many are definitively AGBs, several SMC stars show evidence of hot bottom burning. Other sources show mixed chemistry (oxygen-rich and carbon-rich features), including supergiants with PAH emission. MSX SMC 134 may be the first confirmed silicate/carbon star in the SMC, and MSX SMC 049 is a post-AGB candidate. MSX SMC 145, previously a candidate OH/IR star, is actually an AGB star with a background galaxy at z=0.16 along the same line-of-sight. We consider the overall characteristics of all the {em MSX} sources, the most infrared-bright objects in the SMC, in light of {em Spitzer}s higher sensitivity and resolution, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the James Webb Space Telescope (JWST). Color-color diagrams using the IRS spectra and JWST mid-infrared filters show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different YSO classes.
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.
Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC602/N90 is characterized by the HII nebular ring N90 and the young cluster of pre--main-sequence (PMS) and early-type main sequence stars NGC602. We presen t a thorough cluster analysis of the stellar sample identified with HST/ACS camera in the region. We show that apart from the central cluster, low-mass PMS stars are congregated in thirteen additional small compact sub-clusters at the periphery of NGC602. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (~60%) of the total population being clustered, while the remaining is diffusely distributed in the inter-cluster area. From the corresponding color-magnitude diagrams we disentangle an age-difference of ~2.5Myr between NGC602 and the compact sub-clusters which appear younger. The diffuse PMS population appears to host stars as old as those in NGC602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings we propose a scenario, according to which the region NGC602/N90 experiences an active clustered star formation for the last ~5Myr. The central cluster NGC602 was formed first and rapidly started dissolving into its immediate ambient environment, possibly ejecting also massive stars found away from its center. Star formation continued in sub-clusters of a larger stellar agglomeration, introducing an age-spread of the order of 2.5Myr among the PMS populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا