ﻻ يوجد ملخص باللغة العربية
Optical communication systems, which operate at very high rates, are often limited by the sampling rate bottleneck. The optical wideband regime may exceed analog to digital converters (ADCs) front-end bandwidth. Multi-channel sampling approaches, such as multicoset or interleaved ADCs, have been proposed to sample the wideband signal using several channels. Each channel samples below the Nyquist rate such that the overall sampling rate is preserved. However, this scheme suffers from two practical limitations that make its implementation difficult. First, the inherent anti-aliasing filter of the samplers distorts the wideband signal. Second, it requires accurate time shifts on the order of the signals Nyquist rate, which are challenging to maintain. In this work, we propose an alternative multi-channel sampling scheme, the wideband demodulator for optical waveforms (WINDOW), based on analog RF demodulation, where each channel aliases the spectrum using a periodic mixing function before integration and sampling. We show that intentionally using the inherent ADC filter to perform integration increases the signal to noise ratio (SNR). We demonstrate both theoretically and through numerical experiments that our system outperforms multicoset in terms of signal recovery and symbol estimation in the presence of both thermal and quantization noise but is slightly less robust to timing jitter.
In optical wireless scattering communication, received signal in each symbol interval is captured by a photomultiplier tube (PMT) and then sampled through very short but finite interval sampling. The resulting samples form a signal vector for symbol
We derive bounds on the noncoherent capacity of a very general class of multiple-input multiple-output channels that allow for selectivity in time and frequency as well as for spatial correlation. The bounds apply to peak-constrained inputs; they are
Benefiting from tens of GHz bandwidth, terahertz (THz) communication is considered to be a promising technology to provide ultra-high speed data rates for future 6G wireless systems. To compensate for the serious propagation attenuation of THz signal
We describe a method of constructing a sequence of phase coded waveforms with perfect autocorrelation in the presence of Doppler shift. The constituent waveforms are Golay complementary pairs which have perfect autocorrelation at zero Doppler but are
We present a general method for constructing radar transmit pulse trains and receive filters for which the radar point-spread function in delay and Doppler (radar cross-ambiguity function) is essentially free of range sidelobes inside a Doppler inter