ﻻ يوجد ملخص باللغة العربية
In a wireless network that conveys status updates from sources (i.e., sensors) to destinations, one of the key issues studied by existing literature is how to design an optimal source sampling strategy on account of the communication constraints which are often modeled as queues. In this paper, an alternative perspective is presented -- a novel status-aware communication scheme, namely emph{parallel communications}, is proposed which allows sensors to be communication-agnostic. Specifically, the proposed scheme can determine, based on an online prediction functionality, whether a status packet is worth transmitting considering both the network condition and status prediction, such that sensors can generate status packets without communication constraints. We evaluate the proposed scheme on a Software-Defined-Radio (SDR) test platform, which is integrated with a collaborative autonomous driving simulator, i.e., Simulation-of-Urban-Mobility (SUMO), to produce realistic vehicle control models and road conditions. The results show that with online status predictions, the channel occupancy is significantly reduced, while guaranteeing low status recovery error. Then the framework is applied to two scenarios: a multi-density platooning scenario, and a flight formation control scenario. Simulation results show that the scheme achieves better performance on the network level, in terms of keeping the minimum safe distance in both vehicle platooning and flight control.
Wireless communications for status update are becoming increasingly important, especially for machine-type control applications. Existing work has been mainly focused on Age of Information (AoI) optimizations. In this paper, a status-aware predictive
A large body of applications that involve monitoring, decision making, and forecasting require timely status updates for their efficient operation. Age of Information (AoI) is a newly proposed metric that effectively captures this requirement. Recent
Timely status updating is crucial for future applications that involve remote monitoring and control, such as autonomous driving and Industrial Internet of Things (IIoT). Age of Information (AoI) has been proposed to measure the freshness of status u
We consider a communication system in which status updates arrive at a source node, and should be transmitted through a network to the intended destination node. The status updates are samples of a random process under observation, transmitted as pac
In this work, we propose a content caching and delivery strategy to maximize throughput capacity in cache-enabled wireless networks. To this end, efficient betweenness (EB), which indicates the ratio of content delivery paths passing through a node,