ترغب بنشر مسار تعليمي؟ اضغط هنا

Wakefields of a Beam near a Single Plate in a Flat Dechirper

160   0   0.0 ( 0 )
 نشر من قبل Karl Bane
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give formulas for the longitudinal, transverse, and quad point charge wakes for a short bunch of electrons passing by one plate of a flat dechirper.

قيم البحث

اقرأ أيضاً

We have performed Joule power loss calculations for a flat dechirper. We have considered the configurations of the beam on-axis between the two plates---for chirp control---and for the beam especially close to one plate---for use as a fast kicker. Ou r calculations use a surface impedance approach, one that is valid when corrugation parameters are small compared to aperture (the perturbative parameter regime). In our model we ignore effects of field reflections at the sides of the dechirper plates, and thus expect the results to underestimate the Joule losses. The analytical results were also tested by numerical, time-domain simulations. We find that most of the wake power lost by the beam is radiated out to the sides of the plates. For the case of the beam passing by a single plate, we derive an analytical expression for the broad-band impedance, and---in Appendix B---numerically confirm recently developed, analytical formulas for the short-range wakes. While our theory can be applied to the LCLS-II dechirper with large gaps, for the nominal apertures we are not in the perturbative regime and the reflection contribution to Joule losses is not negligible. With input from computer simulations, we estimate the Joule power loss (assuming bunch charge of 300 pC, repetition rate of 100 kHz) is 21~W/m for the case of two plates, and 24 W/m for the case of a single plate.
In previous work [1] general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X- ray FELs--like the LCLS--is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as function of beam offset, the slice energy spread increase, and the emittance growth. In the Appendix, a more accurate derivation--than is found in [1]--of the arbitrary bunch length wakes is performed; we find full agreement with the earlier results, provided the bunches are short compared to the dechirper gap, which is normally the regime of interest. [1] K. Bane and G. Stupakov, Phys. Rev. ST Accel. Beams 18, 034401(2015).
We develop analytical models of the longitudinal and transverse wakes, on and off axis for realistic structures, and then compare them with numerical calculations, and generally find good agreement. These analytical first order formulas approximate t he droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, zeroth order formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. With the beam moved to 200~$mu$m from one jaw in one dechiper section, one can achieve a 3~MV transverse kick differential over a 30~$mu$m length.
We use beam position measurements over the first part of the AWAKE electron beamline, together with beamline modeling, to deduce the beam average momentum and to predict the beam position in the second part of the beamline. Results show that using on ly the first five beam position monitors leads to much larger differences between predicted and measured positions at the last two monitors than when using the first eight beam position monitors. These last two positions can in principle be used with ballistic calculations to predict the parameters of closest approach of the electron bunch with the proton beam. In external injection experiments of the electron bunch into plasma wakefields driven by the proton bunch, only the first five beam position monitors measurements remain un-affected by the presence of the much higher charge proton bunch. Results with eight beam position monitors show the prediction method works in principle to determine electron and proton beams closest approach within the wakefields width ($<$1,mm), corresponding to injection of electrons into the wakefields. Using five beam position monitors is not sufficient.
The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, %a corrugated structure in flat geometry, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper , with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multi-color photon beams using the Fresh-Slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Here we measure, as function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. This report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an X-ray free electron laser.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا