ﻻ يوجد ملخص باللغة العربية
We develop analytical models of the longitudinal and transverse wakes, on and off axis for realistic structures, and then compare them with numerical calculations, and generally find good agreement. These analytical first order formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, zeroth order formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. With the beam moved to 200~$mu$m from one jaw in one dechiper section, one can achieve a 3~MV transverse kick differential over a 30~$mu$m length.
In previous work [1] general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X-
We have performed Joule power loss calculations for a flat dechirper. We have considered the configurations of the beam on-axis between the two plates---for chirp control---and for the beam especially close to one plate---for use as a fast kicker. Ou
We give formulas for the longitudinal, transverse, and quad point charge wakes for a short bunch of electrons passing by one plate of a flat dechirper.
We briefly compare in numerical simulations the relativistic ionization front and electron bunch seeding of the self-modulation of a relativistic proton bunch in plasma. When parameters are such that initial wakefields are equal with the two seeding
We discuss several analytical models for impedances of very short bunches. The approximate analytical models are compared with direct solution of Maxwells equations.