ﻻ يوجد ملخص باللغة العربية
Quantun non-demolition (QND) variables are generlized to the nonlocal ones by proposing QND measurement networks of Bell states and multi-partite GHZ states, which means that we can generate and measure them without any destruction. One of its prospective applications in the quantum authentication system of the Quantum Security Automatic Teller Machine (QSATM) which is much more reliable than the classical ones is also presented.
An extensive debate on quantum non-demolition (QND) measurement, reviewed in Grangier et al. [Nature, {bf 396}, 537 (1998)], finds that true QND measurements must have both non-classical state-preparation capability and non-classical information-dama
Quantum non-demolition (QND) measurements improve sensitivity by evading measurement back-action. The technique was first proposed to detect mechanical oscillations in gravity wave detectors,and demonstrated in the measurement of optical fields, lead
In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum da
With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum m
Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step towards the implementation of quantum error-correcting codes, quantum non-demolition (QND) measurements are needed to efficiently detect the