ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the RKKY exchange coupling between two ferromagnets (FM) separated by a thin topological insulator film (TI). We find an unusual dependence of the RKKY exchange coupling on the TI thickness ($t_{TI}$). First, when $t_{TI}$ decreases, the coupling amplitude increases at first and reaches its maximum value at some critical thickness, below which the amplitude turns to diminish. This trend is attributed to the hybridization between surfaces of the TI film, which opens a gap below critical thickness and thus turns the surfaces into insulating state from semi-metal state. In insulating phase, diamagnetism induced by the gap-opening compensates paramagnetism of Dirac state, resulting in a diminishing magnetic susceptibility and RKKY coupling. For typical parameters, the critical thickness in Bi2Se3 thin film is estimated to be in the range of 3-5 nm.
Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in to
The dynamics of itinerant electrons in topological insulator (TI) thin films is investigated using a multi-band decomposition approach. We show that the electron trajectory in the 2D film is anisotropic and confined within a characteristic region. Re
We investigate the current-induced spin-orbit torque in thin topological insulator (TI) films in the presence of hybridization between the top and bottom surface states. We formulate the relation between spin torque and TI thickness, from which we de
We theoretically investigate tunneling magnetoresistance (TMR) devices, which are probing the spin-momentum coupled nature of surface states of the three-dimensional topological insulator Bi$_{2}$Se$_{3}$. Theoretical calculations are performed based
A noticeable magnetoresistive effect has been observed on ferromagnet/superconductor/ferromagnet (FSF) microbridges based on diluted ferromagnetic PdFe alloy containing as small as 1% magnetic atoms. Microstructuring of the FSF trilayers does not des