ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring Coupling of Distributed Dynamical Systems via Transfer Entropy

112   0   0.0 ( 0 )
 نشر من قبل Oliver Cliff
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we are interested in structure learning for a set of spatially distributed dynamical systems, where individual subsystems are coupled via latent variables and observed through a filter. We represent this model as a directed acyclic graph (DAG) that characterises the unidirectional coupling between subsystems. Standard approaches to structure learning are not applicable in this framework due to the hidden variables, however we can exploit the properties of certain dynamical systems to formulate exact methods based on state space reconstruction. We approach the problem by using reconstruction theorems to analytically derive a tractable expression for the KL-divergence of a candidate DAG from the observed dataset. We show this measure can be decomposed as a function of two information-theoretic measures, transfer entropy and stochastic interaction. We then present two mathematically robust scoring functions based on transfer entropy and statistical independence tests. These results support the previously held conjecture that transfer entropy can be used to infer effective connectivity in complex networks.



قيم البحث

اقرأ أيضاً

The behaviour of many real-world phenomena can be modelled by nonlinear dynamical systems whereby a latent system state is observed through a filter. We are interested in interacting subsystems of this form, which we model by a set of coupled maps as a synchronous update graph dynamical systems. Specifically, we study the structure learning problem for spatially distributed dynamical systems coupled via a directed acyclic graph. Unlike established structure learning procedures that find locally maximum posterior probabilities of a network structure containing latent variables, our work exploits the properties of dynamical systems to compute globally optimal approximations of these distributions. We arrive at this result by the use of time delay embedding theorems. Taking an information-theoretic perspective, we show that the log-likelihood has an intuitive interpretation in terms of information transfer.
In many common-payoff games, achieving good performance requires players to develop protocols for communicating their private information implicitly -- i.e., using actions that have non-communicative effects on the environment. Multi-agent reinforcem ent learning practitioners typically approach this problem using independent learning methods in the hope that agents will learn implicit communication as a byproduct of expected return maximization. Unfortunately, independent learning methods are incapable of doing this in many settings. In this work, we isolate the implicit communication problem by identifying a class of partially observable common-payoff games, which we call implicit referential games, whose difficulty can be attributed to implicit communication. Next, we introduce a principled method based on minimum entropy coupling that leverages the structure of implicit referential games, yielding a new perspective on implicit communication. Lastly, we show that this method can discover performant implicit communication protocols in settings with very large spaces of messages.
Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$ vanishes, then so does that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$; moreover, once the topological entropy of $(X,{f_n}_{n=1}^{+infty})$ is positive, that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$ jumps to infinity. In contrast to Bowens inequality, we construct a nonautonomous dynamical system whose topological entropy is not preserved under a finite-to-one extension.
138 - Gil Ariel , Haim Diamant 2020
The thermodynamic definition of entropy can be extended to nonequilibrium systems based on its relation to information. To apply this definition in practice requires access to the physical systems microstates, which may be prohibitively inefficient t o sample or difficult to obtain experimentally. It is beneficial, therefore, to relate the entropy to other integrated properties which are accessible out of equilibrium. We focus on the structure factor, which describes the spatial correlations of density fluctuations and can be directly measured by scattering. The information gained by a given structure factor regarding an otherwise unknown system provides an upper bound for the systems entropy. We find that the maximum-entropy model corresponds to an equilibrium system with an effective pair-interaction. Approximate closed-form relations for the effective pair-potential and the resulting entropy in terms of the structure factor are obtained. As examples, the relations are used to estimate the entropy of an exactly solvable model and two simulated systems out of equilibrium. The focus is on low-dimensional examples, where our method, as well as a recently proposed compression-based one, can be tested against a rigorous direct-sampling technique. The entropy inferred from the structure factor is found to be consistent with the other methods, superior for larger system sizes, and accurate in identifying global transitions. Our approach allows for extensions of the theory to more complex systems and to higher-order correlations.
In order to develop systems capable of artificial evolution, we need to identify which systems can produce complex behavior. We present a novel classification method applicable to any class of deterministic discrete space and time dynamical systems. The method is based on classifying the asymptotic behavior of the average computation time in a given system before entering a loop. We were able to identify a critical region of behavior that corresponds to a phase transition from ordered behavior to chaos across various classes of dynamical systems. To show that our approach can be applied to many different computational systems, we demonstrate the results of classifying cellular automata, Turing machines, and random Boolean networks. Further, we use this method to classify 2D cellular automata to automatically find those with interesting, complex dynamics. We believe that our work can be used to design systems in which complex structures emerge. Also, it can be used to compare vario

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا