ﻻ يوجد ملخص باللغة العربية
Despite the potential advantages of information storage in antiferromagnetically coupled materials, it remains unclear whether one can control the magnetic moment orientation efficiently because of the cancelled magnetic moment. Here, we report spin-orbit torque induced magnetization switching of ferrimagnetic Co1-xTbx films with perpendicular magnetic anisotropy. Current induced switching is demonstrated in all of the studied film compositions, including those near the magnetization compensation point. The spin-orbit torque induced effective field is further quantified in the domain wall motion regime. A divergent behavior that scales with the inverse of magnetic moment is confirmed close to the compensation point, which is consistent with angular momentum conservation. Moreover, we also quantify the Dzyaloshinskii-Moriya interaction energy in the Ta/Co1-xTbx system and we find that the energy density increases as a function of the Tb concentration. The demonstrated spin-orbit torque switching, in combination with the fast magnetic dynamics and minimal net magnetization of ferrimagnetic alloys, promises spintronic devices that are faster and with higher density than traditional ferromagnetic systems.
Synthetic antiferromagnets (SAF) have been proposed to replace ferromagnets in magnetic memory devices to reduce the stray field, increase the storage density and improve the thermal stability. Here we investigate the spin-orbit torque in a perpendic
A large anti-damping spin-obit torque (SOT) efficiency in magnetic heterostructures is a prerequisite to realize energy efficient spin torque based magnetic memories and logic devices. The efficiency can be characterized in terms of the spin-orbit fi
Ferromagnetic spintronics has been a main focus as it offers non-volatile memory and logic applications through current-induced spin-transfer torques. Enabling wider applications of such magnetic devices requires a lower switching current for a small
It has been predicted that transverse spin current can propagate coherently (without dephasing) over a long distance in antiferromagnetically ordered metals. Here, we estimate the dephasing length of transverse spin current in ferrimagnetic CoGd allo
XXYZ equiatomic quaternary Heusler alloys (EQHAs) containing Cr, Al, and select Group IVB elements ($textit{M}$ = Ti, Zr, Hf) and Group VB elements ($textit{N}$ = V, Nb, Ta) were studied using state-of-the-art density functional theory to determine t