ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully-Compensated Ferrimagnetic Spin Filter Materials within the Cr$textit{M}textit{N}$Al Equiatomic Quaternary Heusler Alloys

112   0   0.0 ( 0 )
 نشر من قبل Matthew Matzelle
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

XXYZ equiatomic quaternary Heusler alloys (EQHAs) containing Cr, Al, and select Group IVB elements ($textit{M}$ = Ti, Zr, Hf) and Group VB elements ($textit{N}$ = V, Nb, Ta) were studied using state-of-the-art density functional theory to determine their effectiveness in spintronic applications. Each alloy is classified based on their spin-dependent electronic structure as a half-metal, a spin gapless semiconductor, or a spin filter material. We predict several new fully-compensated ferrimagnetic spin filter materials with small electronic gaps and large exchange splitting allowing for robust spin polarization with small resistance. CrVZrAl, CrVHfAl, CrTiNbAl, and CrTiTaAl are identified as particularly robust spin filter candidates with an exchange splitting of $sim 0.20$ eV. In particular, CrTiNbAl and CrTiTaAl have exceptionally small band gaps of $sim 0.10$ eV. Moreover, in these compounds, a spin asymmetric electronic band gap is maintained in 2 of 3 possible atomic arrangements they can take, making the electronic properties less susceptible to random site disorder. In addition, hydrostatic stress is applied to a subset of the studied compounds in order to determine the stability and tunability of the various electronic phases. Specifically, we find the CrAlV$textit{M}$ subfamily of compounds to be exceptionally sensitive to hydrostatic stress, yielding transitions between all spin-dependent electronic phases.

قيم البحث

اقرأ أيضاً

Spin gapless semiconductors (SGS) form a new class of magnetic semiconductors, which has a band gap for one spin sub band and zero band gap for the other, and thus are useful for tunable spin transport based applications. In this paper, we report the first experimental evidence for spin gapless semiconducting behavior in CoFeMnSi Heusler alloy. Such a behavior is also confirmed by first principles band structure calculations. The most stable configuration obtained by the theoretical calculation is verified by experiment. The alloy is found to crystallize in the cubic Heusler structure (LiMgPdSn type) with some amount of disorder and has a saturation magnetization of 3.7 Bohrs magneton/f.u.. and Curie temperature of 620 K. The saturation magnetization is found to follow the Slater-Pauling behavior, one of the prerequisites for SGS. Nearly temperature-independent carrier concentration and electrical conductivity is observed from 5 to 300 K. An anomalous Hall coefficient of 162 S/cm is obtained at 5 K. Point contact Andreev reflection data has yielded the current spin polarization value of 0.64, which is found to be robust against the structural disorder. All these properties are quite promising for the spintronic applications such as spin injection and can bridge a gap between the contrasting behavior of half-metallic ferromagnets and semiconductors.
In this paper, we investigate CoFeCrAl alloy by means of various experimental techniques and ab-initio calculations to look for half-metallic nature. The alloy is found to exist in the cubic Heusler structure, with presence of B2 ordering. Saturation magnetization (MS) value of about 2 Bohr magneton/f.u. is observed at 8 K under ambient pressure, which is in good agreement with the Slater-Pauling rule. MS values are found to be independent of pressure, which is a prerequisite for half-metals. The ab-initio electronic structure calculations predict half-metallic nature for the alloy with a spin slitting energy of 0.31 eV. Importantly, this system shows a high current spin polarization value of 0.67 [with error of 0.02], as deduced from the point contact Andreev reflection (PCAR) measurements. Linear dependence of electrical resistivity with temperature indicates the possibility of reasonably high spin polarization at elevated temperatures (~150 K) as well. All these suggest that CoFeCrAl is a promising material for the spintronic devices.
133 - Joseph Finley , Luqiao Liu 2016
Despite the potential advantages of information storage in antiferromagnetically coupled materials, it remains unclear whether one can control the magnetic moment orientation efficiently because of the cancelled magnetic moment. Here, we report spin- orbit torque induced magnetization switching of ferrimagnetic Co1-xTbx films with perpendicular magnetic anisotropy. Current induced switching is demonstrated in all of the studied film compositions, including those near the magnetization compensation point. The spin-orbit torque induced effective field is further quantified in the domain wall motion regime. A divergent behavior that scales with the inverse of magnetic moment is confirmed close to the compensation point, which is consistent with angular momentum conservation. Moreover, we also quantify the Dzyaloshinskii-Moriya interaction energy in the Ta/Co1-xTbx system and we find that the energy density increases as a function of the Tb concentration. The demonstrated spin-orbit torque switching, in combination with the fast magnetic dynamics and minimal net magnetization of ferrimagnetic alloys, promises spintronic devices that are faster and with higher density than traditional ferromagnetic systems.
It has been predicted that transverse spin current can propagate coherently (without dephasing) over a long distance in antiferromagnetically ordered metals. Here, we estimate the dephasing length of transverse spin current in ferrimagnetic CoGd allo ys by spin pumping measurements across the compensation point. A modified drift-diffusion model, which accounts for spin-current transmission through the ferrimagnet, reveals that the dephasing length is about 4-5 times longer in nearly compensated CoGd than in ferromagnetic metals. This finding suggests that antiferromagnetic order can mitigate spin dephasing -- in a manner analogous to spin echo rephasing for nuclear and qubit spin systems -- even in structurally disordered alloys at room temperature. We also find evidence that transverse spin current interacts more strongly with the Co sublattice than the Gd sublattice. Our results provide fundamental insights into the interplay between spin current and antiferromagnetic order, which are crucial for engineering spin torque effects in ferrimagnetic and antiferromagnetic metals.
The discovery of materials with improved functionality can be accelerated by rational material design. Heusler compounds with tunable magnetic sublattices allow to implement this concept to achieve novel magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a similarly large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. We demonstrate the applicability of our design concept on a second material, Mn-Fe-Ga, with a magnetic transition above room temperature, exemplifying the universality of the concept and the feasibility of room-temperature applications. Our study points to a new direction for novel magneto-electronic devices. At the same time it suggests a new route for realizing rare-earth free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا