ﻻ يوجد ملخص باللغة العربية
We report on a new design of terahertz quantum cascade laser based on a single, potential-inserted quantum well active region. The quantum well properties are engineered through single monolayer InAs inserts. The modeling is based on atomistic, spds* tight-binding calculations, and performances are compared to that of the classical three-well design. We obtain a 100% increase of the oscillator strength per unit length, while maintaining a high, nearly temperature-independent contrast between phonon-induced relaxation times of the upper and lower lasing states. The improved performances are expected to allow THz lasing at room temperature.
We propose an engineering of the optical properties of GaAs/AlGaAs quantum wells using AlAs and InAs monolayer insertions. A quantitative study of the effects of the monolayer position and the well thickness on the interband and intersubband transiti
Resonant phonon depopulation terahertz quantum cascade lasers based on vertical and diagonal lasing transitions are systematically compared using a well established ensemble Monte Carlo approach. The analysis shows that for operating temperatures bel
We have developed terahertz frequency quantum cascade lasers that exploit a double-periodicity distributed feedback grating to control the emission frequency and the output beam direction independently. The spatial refractive index modulation of the
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, beingthe only electrically pumped device able
THz quantum cascade lasers based on a novel buried cavity geometry are demonstrated by combining double-metal waveguides with proton implantation. Devices are realised with emission at 2.8 THz, displaying ultra low threshold currents of 19 mA at 4K i