ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge Magnon Excitation in Spin Dimer Systems

100   0   0.0 ( 0 )
 نشر من قبل Masashige Matsumoto
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic excitation in a spin dimer system on a bilayer honeycomb lattice is investigated in the presence of a zigzag edge, where disordered and ordered phases can be controlled by a quantum phase transition. In analogy with the case of graphene with a zigzag edge, a flat edge magnon mode appears in the disordered phase. In an ordered phase, a finite magnetic moment generates a mean-field potential to the magnon. Since the potential is nonuniform on the edge and bulk sites, it affects the excitation, and the dispersion of the edge mode deviates from the flat shape. We investigate how the edge magnon mode evolves when the phase changes through the quantum phase transition and discuss the similarities to ordered spin systems on a monolayer honeycomb lattice.



قيم البحث

اقرأ أيضاً

459 - M. Mochizuki , X. Z. Yu , S. Seki 2015
Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in system s out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion - a particle-like object in which spins point in all directions to wrap a sphere - constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micron-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi display a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.
Micron scale ferromagnetic tubes placed on the ends of ferromagnetic CoTaZr spin waveguides are explored in order to enhance the excitation of Backward Volume Magnetostatic Spin Waves. The tubes produce a closed magnetic circuit about the signal line of the coplanar waveguide and are, at the same time, magnetically contiguous with the spin waveguide. This results in a 10 fold increase in spin wave amplitude. However, the tube geometry distorts the magnetic field near the spin waveguide and relatively high biasing magnetic fields are required to establish well defined spin waves. Only the lowest (uniform) spin wave mode is excited.
84 - R. Putnam , A. V. Balatsky , 2018
In this study, we investigate the isolated magnetic interactions between two identical Fe atoms divacantly-substituted into graphene. Using density functional theory, we simulated the electronic and magnetic properties for a supercell of graphene wit h spatial variation of the Fe atoms along either the armchair or zig-zag directions. Overall, we find that the exchange interaction between the two Fe atoms fluctuates from ferromagnetic to antiferromagnetic as a function of the spatial distance in the armchair direction. Given the induced magnetic moment and increased density of states at the Fermi level by the surrounding carbon atoms, we conclude that an RKKY-like interaction may characterize the exchange interactions between the Fe atoms. Furthermore, we examined the same interactions for Fe atoms along the zig-zag direction in graphene and found no evidence for an RKKY interaction as this system shows standard superexchange between the transition-metal impurities. Therefore, we determine that Fe-substituted graphene produces a directional-dependent spin interaction, which may provide stability to spintronic and multifunctional devices and applications for graphene.
Spin excitations of magnetic thin films are the founding element for novel transport concepts in spintronics, magnonics, and magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, their behaviour in mesoscop ic films is less known due to experimental limitations. Here, we employ Resonant Inelastic X-Ray Scattering to investigate the spin excitation spectrum in mesoscopic Fe films, from bulk-like down to 3 unit cells thick. In bulk-like samples, we find isotropic, dispersive ferromagnons consistent with the dispersion observed by neutron scattering in bulk single crystals. As the thickness is reduced, these ferromagnons survive and evolve anisotropically: renormalising to lower energies along the out-of-plane direction while retaining their dispersion in the in-plane direction. This thickness dependence is captured by simple Heisenberg model calculations accounting for the confinement in the out-of-plane direction through the loss of Fe bonds. Our findings highlight the effects of mesoscopic scaling on spin dynamics and identify thickness as a knob for fine-tuning and controlling magnetic properties in films.
The quench dynamics of a system involving two competing orders is investigated using a Ginzburg-Landau theory with relaxational dynamics. We consider the scenario where a pump rapidly heats the system to a high temperature, after which the system coo ls down to its equilibrium temperature. We study the evolution of the order parameter amplitude and fluctuations in the resulting time dependent free energy landscape. Exponentially growing thermal fluctuations dominate the dynamics. The system typically evolves into the phase associated with the faster-relaxing order parameter, even if it is not the global free energy minimum. This theory offers a natural explanation for the widespread experimental observation that metastable states may be induced by laser induced collapse of a dominant equilibrium order parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا