ﻻ يوجد ملخص باللغة العربية
In this study, we investigate the isolated magnetic interactions between two identical Fe atoms divacantly-substituted into graphene. Using density functional theory, we simulated the electronic and magnetic properties for a supercell of graphene with spatial variation of the Fe atoms along either the armchair or zig-zag directions. Overall, we find that the exchange interaction between the two Fe atoms fluctuates from ferromagnetic to antiferromagnetic as a function of the spatial distance in the armchair direction. Given the induced magnetic moment and increased density of states at the Fermi level by the surrounding carbon atoms, we conclude that an RKKY-like interaction may characterize the exchange interactions between the Fe atoms. Furthermore, we examined the same interactions for Fe atoms along the zig-zag direction in graphene and found no evidence for an RKKY interaction as this system shows standard superexchange between the transition-metal impurities. Therefore, we determine that Fe-substituted graphene produces a directional-dependent spin interaction, which may provide stability to spintronic and multifunctional devices and applications for graphene.
In the vicinity of the magic angle in twisted bilayer graphene (TBG), the two low-energy van Hove singularities (VHSs) become exceedingly narrow1-10 and many exotic correlated states, such as superconductivity, ferromagnetism, and topological phases,
We have carried out Raman spectroscopy experiments to investigate two-magnon excitations in epitaxial thin films of the quasi-two-dimensional antiferromagnetic Mott insulator Sr$_2$IrO$_4$ under in-plane misfit strain. With in-plane biaxial compressi
We examine the possibility of using graphene nanoribbons (GNRs) with directly substituted chromium atoms as spintronic device. Using density functional theory, we simulate a voltage bias across a constructed GNR in a device setup, where a magnetic di
Magnetic topological defects are energetically stable spin configurations characterized by symmetry breaking. Vortices and skyrmions are two well-known examples of 2D spin textures that have been actively studied for both fundamental interest and pra
Magnetic excitation in a spin dimer system on a bilayer honeycomb lattice is investigated in the presence of a zigzag edge, where disordered and ordered phases can be controlled by a quantum phase transition. In analogy with the case of graphene with