ﻻ يوجد ملخص باللغة العربية
Spin excitations of magnetic thin films are the founding element for novel transport concepts in spintronics, magnonics, and magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, their behaviour in mesoscopic films is less known due to experimental limitations. Here, we employ Resonant Inelastic X-Ray Scattering to investigate the spin excitation spectrum in mesoscopic Fe films, from bulk-like down to 3 unit cells thick. In bulk-like samples, we find isotropic, dispersive ferromagnons consistent with the dispersion observed by neutron scattering in bulk single crystals. As the thickness is reduced, these ferromagnons survive and evolve anisotropically: renormalising to lower energies along the out-of-plane direction while retaining their dispersion in the in-plane direction. This thickness dependence is captured by simple Heisenberg model calculations accounting for the confinement in the out-of-plane direction through the loss of Fe bonds. Our findings highlight the effects of mesoscopic scaling on spin dynamics and identify thickness as a knob for fine-tuning and controlling magnetic properties in films.
We report grazing incidence small angle neutron scattering (GISANS) and complementary off-specular neutron reflectometry (OSR) of the magnetic order in a single-crystalline epitaxial MnSi film on Si(111) in the thick film limit. Providing a means of
Mn$_{3}$Sn is a non-collinear antiferromagnet which displays a large anomalous Hall effect at room temperature. It is believed that the principal contribution to its anomalous Hall conductivity comes from Berry curvature. Moreover, dc transport and p
Magnetic materials hosting topological spin textures like magnetic skyrmion exhibit nontrivial Hall effect, namely, topological Hall effect (THE). In this study, we demonstrate the emergence of THE in thin films of half-metallic perovskite manganites
Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liq
The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an or