ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrally resolved single-photon imaging with hybrid superconducting - nanophotonic circuits

71   0   0.0 ( 0 )
 نشر من قبل Wolfram Pernice
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.

قيم البحث

اقرأ أيضاً

We present an approach to increase the effective light-receiving area of superconducting nanowire single-photon detectors (SNSPD) by means of free-form microlenses that are printed in situ on top of the sensitive detector area using high-resolution m ulti-photon lithography. We demonstrate a detector based on a niobium-nitride (NbN) nanowire with a 4.5 $mathrm mu$m $times$ 4.5 $mathrm mu$m sensitive area, supplemented with a lens of 60 $mathrm mu$m diameter. For free-space illumination at a wavelength of 1550 nm, the lensed sensor has a 100-fold-increased effective collection area, which leads to strongly enhanced system detection efficiency without the need for long nanowires. Our approach can be readily applied to a wide range of sensor types and effectively overcomes the inherent design conflict between high counting speed due to short sensor reset time, high timing accuracy, and high fabrication yield on the one hand and high collection efficiency through large effective detection areas on the other hand.
We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.
Time- and number-resolved photon detection is crucial for photonic quantum information processing. Existing photon-number-resolving (PNR) detectors usually have limited timing and dark-count performance or require complex fabrication and operation. H ere we demonstrate a PNR detector at telecommunication wavelengths based on a single superconducting nanowire with an integrated impedance-matching taper. The prototyping device was able to resolve up to five absorbed photons and had 16.1 ps timing jitter, <2 c.p.s. device dark count rate, $sim$86 ns reset time, and 5.6% system detection efficiency (without cavity) at 1550 nm. Its exceptional distinction between single- and two-photon responses is ideal for coincidence counting and allowed us to directly observe bunching of photon pairs from a single output port of a Hong-Ou-Mandel interferometer. This detector architecture may provide a practical solution to applications that require high timing resolution and few-photon discrimination.
83 - Lixing You 2020
The superconducting nanowire single-photon detector (SNSPD) is a quantum-limit superconducting optical detector based on the Cooper-pair breaking effect by a single photon, which exhibits a higher detection efficiency, lower dark count rate, higher c ounting rate, and lower timing jitter when compared with those exhibited by its counterparts. SNSPDs have been extensively applied in quantum information processing, including quantum key distribution and optical quantum computation. In this review, we present the requirements of single-photon detectors from quantum information, as well as the principle, key metrics, latest performance issues and other issues associated with SNSPD. The representative applications of SNSPDs with respect to quantum information will also be covered.
Generally, a superconducting nanowire single-photon detector (SNSPD) is composed of wires with a typical width of ~100 nm. Recent studies have found that superconducting strips with a micrometer-scale width can also detect single photons. Compared wi th the SNSPD, the superconducting microstrip single-photon detector (SMSPD) has smaller kinetic inductance, higher working current, and lower requirement in fabrication accuracy, providing potential applications in the development of ultra-large active area detectors. However, the study on SMSPD is still in its infancy, and the realization of its high-performance and practical use remains an opening question. This study demonstrates a NbN SMSPD with a saturated system detection efficiency (SDE) of ~92.2% at a dark count rate of ~200 cps, a polarization sensitivity of ~1.03, and a minimum timing jitter of ~48 ps, at the telecom wavelength of 1550 nm when coupled with a single mode fiber and operated at 0.84 K. Furthermore, the detectors SDE is over 70% when operated at a 2.1-K closed-cycle cryocooler.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا