ترغب بنشر مسار تعليمي؟ اضغط هنا

A kilopixel array of superconducting nanowire single-photon detectors

93   0   0.0 ( 0 )
 نشر من قبل Emma Wollman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.


قيم البحث

اقرأ أيضاً

83 - Lixing You 2020
The superconducting nanowire single-photon detector (SNSPD) is a quantum-limit superconducting optical detector based on the Cooper-pair breaking effect by a single photon, which exhibits a higher detection efficiency, lower dark count rate, higher c ounting rate, and lower timing jitter when compared with those exhibited by its counterparts. SNSPDs have been extensively applied in quantum information processing, including quantum key distribution and optical quantum computation. In this review, we present the requirements of single-photon detectors from quantum information, as well as the principle, key metrics, latest performance issues and other issues associated with SNSPD. The representative applications of SNSPDs with respect to quantum information will also be covered.
Because of their universal nature, Fano fluctuations are expected to influence the response of superconducting nanowire single-photon detectors (SNSPDs). We predict that photon counting rate ($PCR$) as a function of bias current ($I_B$) in SNSPDs is described by an integral over a transverse coordinate-dependent complementary error function. The latter describes smearing of local responses due to Fano fluctuations of the amount of energy deposited into electronic system. The finite width, $sigma$, of the $PCR$ vs $I_B$ arises from fluctuations in the energy partition between quasiparticles and phonons during the energy down-conversion cascade. In narrow-nanowire SNSPDs the local responses are uniform, and the effect of Fano-fluctuations on $sigma$ is dominant. In wide-nanowire SNSPDs with strong coordinate dependence of local responses due to vortex-antivortex unbinding and vortex entry from edges, Fano-fluctuations smear singularities imprinted by vorticity on the transition part of $PCR$ curve. We demonstrate good agreement between theory and experiments for a series of bath temperatures and photon energies in narrow-wire WSi SNSPDs. The time-resolved hotspot relaxation curves predicted by Fano fluctuations match the Lorentzian shapes observed in experiments over the whole range of bias currents investigated except for their tails.
In the past decade superconducting nanowire single photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs are coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but are yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time-resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multi-mode fiber coupled detectors, and show how it can be addressed. We fabricated high performance 20, 25 and 50{mu}m diameter detectors targeted for visible, near infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We simultaneously achieved system efficiency >80% and time resolution <20 ps and made large detectors that offer outstanding performances.
Superconducting nanowire single-photon detectors have emerged as a promising technology for quantum metrology from the mid-infrared to ultra-violet frequencies. Despite the recent experimental successes, a predictive model to describe the detection e vent in these detectors is needed to optimize the detection metrics. Here, we propose a probabilistic criterion for single-photon detection based on single-vortex (flux quanta) crossing the width of the nanowire. Our model makes a connection between the dark-counts and photon-counts near the detection threshold. The finite-difference calculations demonstrate that a change in the bias current distribution as a result of the photon absorption significantly increases the probability of single-vortex crossing even if the vortex potential barrier has not vanished completely. We estimate the instrument response function and show that the timing uncertainty of this vortex tunneling process corresponds to a fundamental limit in timing jitter of the click event. We demonstrate a trade-space between this intrinsic (quantum) timing jitter, quantum efficiency, and dark count rate in TaN, WSi, and NbN superconducting nanowires at different experimental conditions. Our detection model can also explain the experimental observation of exponential decrease in the quantum efficiency of SNSPDs at lower energies. This leads to a pulse-width dependency in the quantum efficiency, and it can be further used as an experimental test to compare across different detection models.
Superconducting nanowire single-photon detectors are set apart from other photon counting technologies above all else by their extremely high speed, with few-ten-ps timing resolution, and recovery times $tau_Rlesssim$10 ns after a detection event. In this work, however, we identify in the conventional electrical readout scheme a nonlinear interaction between the detector and its readout which can make stable, high-efficiency operation impossible at count rates even an order-of-magnitude less than $tau_R^{-1}$. We present detailed experimental confirmation of this, and a theoretical model which quantitatively explains our observations. Finally, we describe an improved readout which circumvents this problem, allowing these detectors to be operated stably at high count rates, with a detection efficiency penalty determined purely by their inductive reset time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا