ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting Nanowire Single-Photon Detectors for Quantum Information

84   0   0.0 ( 0 )
 نشر من قبل Lixing You
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lixing You




اسأل ChatGPT حول البحث

The superconducting nanowire single-photon detector (SNSPD) is a quantum-limit superconducting optical detector based on the Cooper-pair breaking effect by a single photon, which exhibits a higher detection efficiency, lower dark count rate, higher counting rate, and lower timing jitter when compared with those exhibited by its counterparts. SNSPDs have been extensively applied in quantum information processing, including quantum key distribution and optical quantum computation. In this review, we present the requirements of single-photon detectors from quantum information, as well as the principle, key metrics, latest performance issues and other issues associated with SNSPD. The representative applications of SNSPDs with respect to quantum information will also be covered.



قيم البحث

اقرأ أيضاً

Superconducting nanowire single-photon detectors have emerged as a promising technology for quantum metrology from the mid-infrared to ultra-violet frequencies. Despite the recent experimental successes, a predictive model to describe the detection e vent in these detectors is needed to optimize the detection metrics. Here, we propose a probabilistic criterion for single-photon detection based on single-vortex (flux quanta) crossing the width of the nanowire. Our model makes a connection between the dark-counts and photon-counts near the detection threshold. The finite-difference calculations demonstrate that a change in the bias current distribution as a result of the photon absorption significantly increases the probability of single-vortex crossing even if the vortex potential barrier has not vanished completely. We estimate the instrument response function and show that the timing uncertainty of this vortex tunneling process corresponds to a fundamental limit in timing jitter of the click event. We demonstrate a trade-space between this intrinsic (quantum) timing jitter, quantum efficiency, and dark count rate in TaN, WSi, and NbN superconducting nanowires at different experimental conditions. Our detection model can also explain the experimental observation of exponential decrease in the quantum efficiency of SNSPDs at lower energies. This leads to a pulse-width dependency in the quantum efficiency, and it can be further used as an experimental test to compare across different detection models.
Recent progress in the development of superconducting nanowire single-photon detectors (SNSPDs) has delivered excellent performances, and has had a great impact on a range of research fields. The timing jitter, which denotes the temporal resolution o f the detection, is a crucial parameter for many applications. Despite extensive work since their apparition, the lowest jitter achievable with SNSPDs is still not clear, and the origin of the intrinsic limits is not fully understood. Understanding its intrinsic behaviour and limits is a mandatory step toward improvements. Here, we report our experimental study on the intrinsically-limited timing jitter in molybdenum silicide (MoSi) SNSPDs. We show that to reach intrinsic jitter, several detector properties such as the latching current and the kinetic inductance of the devices have to be understood. The dependence on the nanowire cross-section and the energy dependence of the intrinsic jitter are exhibited, and the origin of the limits are explicited. System timing jitter of 6.0 ps at 532 nm and 10.6 ps at 1550 nm photon wavelength have been obtained.
We propose a scalable readout interface for superconducting nanowire single-photon detector (SSPD) arrays, which we call the AQFP/RSFQ interface. This interface is composed of adiabatic quantum-flux-parametron (AQFP) and rapid single-flux-quantum (RS FQ) logic families. The AQFP part reads out the spatial information of an SSPD array via a single cable, and the RSFQ part reads out the temporal information via a single cable. The hybrid interface has high temporal resolution owing to low timing jitter in the operation of the RSFQ part. In addition, the hybrid interface achieves high circuit scalability because of low supply current in the operation of the AQFP part. Therefore, the hybrid interface is suitable for handling many-pixel SSPD arrays. We demonstrate a four-pixel SSPD array using the hybrid interface as proof of concept. The measurement results show that the hybrid interface can read out all of the pixels with a low error rate and low timing jitter.
Because of their universal nature, Fano fluctuations are expected to influence the response of superconducting nanowire single-photon detectors (SNSPDs). We predict that photon counting rate ($PCR$) as a function of bias current ($I_B$) in SNSPDs is described by an integral over a transverse coordinate-dependent complementary error function. The latter describes smearing of local responses due to Fano fluctuations of the amount of energy deposited into electronic system. The finite width, $sigma$, of the $PCR$ vs $I_B$ arises from fluctuations in the energy partition between quasiparticles and phonons during the energy down-conversion cascade. In narrow-nanowire SNSPDs the local responses are uniform, and the effect of Fano-fluctuations on $sigma$ is dominant. In wide-nanowire SNSPDs with strong coordinate dependence of local responses due to vortex-antivortex unbinding and vortex entry from edges, Fano-fluctuations smear singularities imprinted by vorticity on the transition part of $PCR$ curve. We demonstrate good agreement between theory and experiments for a series of bath temperatures and photon energies in narrow-wire WSi SNSPDs. The time-resolved hotspot relaxation curves predicted by Fano fluctuations match the Lorentzian shapes observed in experiments over the whole range of bias currents investigated except for their tails.
For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPD s) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 ${mu}$m in diameter, 70 - 80% efficiency, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ~ 0.25 counts/hr for a 56 ${mu}$m diameter pixel. By using the amorphous superconductor MoSi, these UV SNSPDs are also able to operate at temperatures up to 4.2 K. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا