ﻻ يوجد ملخص باللغة العربية
By measuring the thermoelectric effect in high-mobility quantum wells with two occupied subbands in perpendicular magnetic field, we detect magnetophonon oscillations due to interaction of electrons with acoustic phonons. These oscillations contain specific features identified as combined resonances caused by intersubband phonon-assisted transitions of electrons in the presence of Landau quantization. The quantum theory of phonon-drag magnetothermoelectric effect, generalized to the case of multi-subband occupation, describes our experimental findings.
We have investigated the magnetophonon resonance (MPR) effect in a series of single GaAs quantum well samples which are symmetrically modulation doped in the adjacent short period AlAs/GaAs superlattices. Two distinct MPR series are observed originat
To study the influence of microwave irradiation on two-dimensional electrons, we apply a method based on capacitance measurements in GaAs quantum well samples where the gate covers a central part of the layer. We find that the capacitance oscillation
Van der Waals materials and their heterostructures offer a versatile platform for studying a variety of quantum transport phenomena due to their unique crystalline properties and the exceptional ability in tuning their electronic spectrum. However, m
We describe a peculiar fine structure acquired by the in-plane optical phonon at the Gamma-point in graphene when it is brought into resonance with one of the inter-Landau-level transitions in this material. The effect is most pronounced when this la
The theory of spin drift and diffusion in two-dimensional electron gases is developed in terms of a random walk model incorporating Rashba, linear and cubic Dresselhaus, and intersubband spin-orbit couplings. The additional subband degree of freedom