نحن نصف البنية الخاصة التي تم الحصول عليها من قبل الصوت البصري في المستوى الداخلي في الجرافين عندما يتم إحداث التوازن مع واحد من الانتقالات بين مستويات لاندو في هذا المادة. يتم تأثير هذا بشكل أكبر عندما يكون هذا الوضع اللازم (المرتبط بالطيف G في طيف رامان الجرافين) في التوازن مع الانتقالات بين مستويات لاندو 0 -> (+,1) و (-,1) -> 0 عند مجال المغناطيسي B_0 ~ 30 T. يمكن استخدامه لقياس قوة الارتباط الإلكتروني-الصوتي مباشرة، ويمكن استخدام تباينه حسب العامل التعبئة للكشف عن الأوضاع الصوتية مدورة تدويريا.
We describe a peculiar fine structure acquired by the in-plane optical phonon at the Gamma-point in graphene when it is brought into resonance with one of the inter-Landau-level transitions in this material. The effect is most pronounced when this lattice mode (associated with the G-band in graphene Raman spectrum) is in resonance with inter-Landau-level transitions 0 -> (+,1) and (-,1) -> 0, at a magnetic field B_0 ~ 30 T. It can be used to measure the strength of the electron-phonon coupling directly, and its filling-factor dependence can be used experimentally to detect circularly polarized lattice modes.
Van der Waals materials and their heterostructures offer a versatile platform for studying a variety of quantum transport phenomena due to their unique crystalline properties and the exceptional ability in tuning their electronic spectrum. However, m
We have investigated the magnetophonon resonance (MPR) effect in a series of single GaAs quantum well samples which are symmetrically modulation doped in the adjacent short period AlAs/GaAs superlattices. Two distinct MPR series are observed originat
Microwave pinning-mode resonances found around integer quantum Hall effects, are a signature of crystallized quasiparticles or holes. Application of in-plane magnetic field to these crystals, increasing the Zeeman energy, has negligible effect on the
Emergence of half-integer filling factor states, such as nu=5/2 and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimension
The integer quantum Hall (QH) effects characterized by topologically quantized and nondissipative transport are caused by an electrically insulating incompressible phase that prevents backscattering between chiral metallic channels. We probed the inc