This paper continues previous work, based on systematic use of a formula of L. Scott, to detect Hurwitz groups. It closes the problem of determining the finite simple groups contained in $PGL_n(F)$ for $nleq 7$ which are Hurwitz, where $F$ is an alge
braically closed field. For the groups $G_2(q)$, $qgeq 5$, and the Janko groups $J_1$ and $J_2$ it provides explicit $(2,3,7)$-generators.
The famous Tits alternative states that a linear group either contains a nonabelian free group or is soluble-by-(locally finite). We study in this paper similar alternatives in pseudofinite groups. We show for instance that an $aleph_{0}$-saturated p
seudofinite group either contains a subsemigroup of rank $2$ or is nilpotent-by-(uniformly locally finite). We call a class of finite groups $G$ weakly of bounded rank if the radical $rad(G)$ has a bounded Prufer rank and the index of the sockel of $G/rad(G)$ is bounded. We show that an $aleph_{0}$-saturated pseudo-(finite weakly of bounded rank) group either contains a nonabelian free group or is nilpotent-by-abelian-by-(uniformly locally finite). We also obtain some relations between this kind of alternatives and amenability.
Let PC be the group of bijections from [0, 1[ to itself which are continuous outside a finite set. Let PC be its quotient by the subgroup of finitely supported permutations. We show that the Kapoudjian class of PC vanishes. That is, the quotient map
PC $rightarrow$ PC splits modulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group homomorphism, called signature, from PC to Z 2Z. Then we use this signature to list normal subgroups of every subgroup G of PC which contains S fin and such that G, the projection of G in PC , is simple.
We study a random group G in the Gromov density model and its Cayley complex X. For density < 5/24 we define walls in X that give rise to a nontrivial action of G on a CAT(0) cube complex. This extends a result of Ollivier and Wise, whose walls could
be used only for density < 1/5. The strategy employed might be potentially extended in future to all densities < 1/4.
The branching theorem expresses irreducible character values for the symmetric group $S_n$ in terms of those for $S_{n-1}$, but it gives the values only at elements of $S_n$ having a fixed point. We extend the theorem by providing a recursion formula
that handles the remaining cases. It expresses these character values in terms of values for $S_{n-1}$ together with values for $S_n$ that are already known in the recursive process. This provides an alternative to the Murnaghan-Nakayama formula.