ترغب بنشر مسار تعليمي؟ اضغط هنا

A recursion formula for the irreducible characters of the symmetric group

57   0   0.0 ( 0 )
 نشر من قبل Randall Holmes
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Randall R. Holmes




اسأل ChatGPT حول البحث

The branching theorem expresses irreducible character values for the symmetric group $S_n$ in terms of those for $S_{n-1}$, but it gives the values only at elements of $S_n$ having a fixed point. We extend the theorem by providing a recursion formula that handles the remaining cases. It expresses these character values in terms of values for $S_{n-1}$ together with values for $S_n$ that are already known in the recursive process. This provides an alternative to the Murnaghan-Nakayama formula.



قيم البحث

اقرأ أيضاً

76 - Omer Lavi , Arie Levit 2020
Let $R$ be a commutative Noetherian ring with unit. We classify the characters of the group $mathrm{EL}_d (R)$ provided that $d$ is greater than the stable range of the ring $R$. It follows that every character of $mathrm{EL}_d (R)$ is induced from a finite dimensional representation. Towards our main result we classify $mathrm{EL}_d (R)$-invariant probability measures on the Pontryagin dual group of $R^d$.
The structure of the automorphism group of the sandwich semigroup IS_n is described in terms of standard group constructions.
In this paper we give a Casimir Invariant for the Symmetric group $S_n$. Furthermore we obtain and present, for the first time in the literature, explicit formulas for the matrices of the standard representation in terms of the matrices of the permutation representation.
115 - Nic Koban , Adam Piggott 2013
We compute the BNS-invariant for the pure symmetric automorphism groups of right-angled Artin groups. We use this calculation to show that the pure symmetric automorphism group of a right-angled Artin group is itself not a right-angled Artin group pr ovided that its defining graph contains a separating intersection of links.
245 - Jing Jian Li , Zai Ping Lu 2021
A graph $Ga=(V,E)$ is called a Cayley graph of some group $T$ if the automorphism group $Aut(Ga)$ contains a subgroup $T$ which acts on regularly on $V$. If the subgroup $T$ is normal in $Aut(Ga)$ then $Ga$ is called a normal Cayley graph of $T$. Let $r$ be an odd prime. Fang et al. cite{FMW} proved that, with a finite number of exceptions for finite simple group $T$, every connected symmetric Cayley graph of $T$ of valency $r$ is normal. In this paper, employing maximal factorizations of finite almost simple groups, we work out a possible list of those exceptions for $T$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا