ﻻ يوجد ملخص باللغة العربية
We study a random group G in the Gromov density model and its Cayley complex X. For density < 5/24 we define walls in X that give rise to a nontrivial action of G on a CAT(0) cube complex. This extends a result of Ollivier and Wise, whose walls could be used only for density < 1/5. The strategy employed might be potentially extended in future to all densities < 1/4.
We show that the algebraic fundamental group of a smooth projective curve over a finite field admits a finite topological presentation where the number of relations does not exceed the number of generators.
The minimal base size $b(G)$ for a permutation group $G$, is a widely studied topic in the permutation group theory. Z. Halasi and K. Podoski proved that $b(G)leq 2$ for coprime linear groups. Motivated by this result and the probabilistic method use
We introduce a model for random groups in varieties of $n$-periodic groups as $n$-periodic quotients of triangular random groups. We show that for an explicit $d_{mathrm{crit}}in(1/3,1/2)$, for densities $din(1/3,d_{mathrm{crit}})$ and for $n$ large
We show that for a fixed k, Gromov random groups with any positive density have no non-trivial degree-k representations over any field, a.a.s. This is especially interesting in light of the results of Agol, Ollivier and Wise that when the density is
We prove that a random group in the triangular density model has, for density larger than 1/3, fixed point properties for actions on $L^p$-spaces (affine isometric, and more generally $(2-2epsilon)^{1/2p}$-uniformly Lipschitz) with $p$ varying in an