ﻻ يوجد ملخص باللغة العربية
We propose that the Yang-Baxter deformation of the symmetric space sigma-model parameterized by an r-matrix solving the homogeneous (classical) Yang-Baxter equation is equivalent to the non-abelian dual of the undeformed model with respect to a subgroup determined by the structure of the r-matrix. We explicitly demonstrate this on numerous examples in the case of the AdS_5 sigma-model. The same should also be true for the full AdS_5 x S^5 supercoset model, providing an explanation for and generalizing several recent observations relating homogeneous Yang-Baxter deformations based on non-abelian r-matrices to the undeformed AdS_5 x S^5 model by a combination of T-dualities and non-linear coordinate redefinitions. This also includes the special case of deformations based on abelian r-matrices, which correspond to TsT transformations: they are equivalent to non-abelian duals of the original model with respect to a central extension of abelian subalgebras.
We present homogeneous Yang-Baxter deformations of the AdS$_5times$S$^5$ supercoset sigma model as boundary conditions of a 4D Chern-Simons theory. We first generalize the procedure for the 2D principal chiral model developed by Delduc et al [arXiv:1
A large class of integrable deformations of the Principal Chiral Model, known as the Yang-Baxter deformations, are governed by skew-symmetric R-matrices solving the (modified) classical Yang-Baxter equation. We carry out a systematic investigation of
The eta-deformation of the AdS_5 x S^5 superstring depends on a non-split r matrix for the superalgebra psu(2,2|4). Much of the investigation into this model has considered one particular choice, however there are a number of inequivalent alternative
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical $r$-matrices satisfying (modified) classical Yang-Baxter equations. We sh
Poisson-Lie dualising the eta deformation of the G/H symmetric space sigma model with respect to the simple Lie group G is conjectured to give an analytic continuation of the associated lambda deformed model. In this paper we investigate when the eta