ترغب بنشر مسار تعليمي؟ اضغط هنا

Yang-Baxter deformations of the Principal Chiral Model plus Wess-Zumino term

87   0   0.0 ( 0 )
 نشر من قبل Ben Hoare
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A large class of integrable deformations of the Principal Chiral Model, known as the Yang-Baxter deformations, are governed by skew-symmetric R-matrices solving the (modified) classical Yang-Baxter equation. We carry out a systematic investigation of these deformations in the presence of the Wess-Zumino term for simple Lie groups, working in a framework that treats both inhomogeneous and homogeneous deformations on the same footing. After analysing the cohomological conditions under which such a deformation is admissible, we consider an action for the general Yang-Baxter deformation of the Principal Chiral Model plus Wess-Zumino term and prove its classical integrability. We also show how the model is found from a number of alternative formulations: affine Gaudin models, E-models, 4-dimensional Chern-Simons theory and, for homogeneous deformations, non-abelian T-duality.



قيم البحث

اقرأ أيضاً

84 - Kai Kratzert 2003
We investigate the breakdown of supersymmetry at finite temperature. While it has been proven that temperature always breaks supersymmetry, the nature of this breaking is less clear. On the one hand, a study of the Ward-Takahashi identities suggests a spontaneous breakdown of supersymmetry without the existence of a Goldstino, while on the other hand it has been shown that in any supersymmetric plasma there should exist a massless fermionic collective excitation, the phonino. Aim of this work is to unify these two approaches. For the Wess-Zumino model, it is shown that the phonino exists and contributes to the supersymmetric Ward-Takahashi identities in the right way displaying that supersymmetry is broken spontaneously with the phonino as the Goldstone fermion.
172 - J.A. Gracey 2021
We renormalize the Wess-Zumino model at five loops in both the minimal subtraction (MSbar) and momentum subtraction (MOM) schemes. The calculation is carried out automatically using a routine that performs the D-algebra. Generalizations of the model to include $O(N)$ symmetry as well as the case with real and complex tensor couplings are also considered. We confirm that the emergent SU(3) symmetry of six dimensional O(N) phi^3 theory is also a property of the tensor O(N) model. With the new loop order precision we compute critical exponents in the epsilon expansion for several of these generalizations as well as the XYZ model in order to compare with conformal bootstrap estimates in three dimensions. For example at five loops our estimate for the correction to scaling exponent is in very good agreement for the Wess-Zumino model which equates to the emergent supersymmetric fixed point of the Gross-Neveu-Yukawa model. We also compute the rational number that is part of the six loop MSbar beta-function.
148 - B. Hoare , A.A. Tseytlin 2016
We propose that the Yang-Baxter deformation of the symmetric space sigma-model parameterized by an r-matrix solving the homogeneous (classical) Yang-Baxter equation is equivalent to the non-abelian dual of the undeformed model with respect to a subgr oup determined by the structure of the r-matrix. We explicitly demonstrate this on numerous examples in the case of the AdS_5 sigma-model. The same should also be true for the full AdS_5 x S^5 supercoset model, providing an explanation for and generalizing several recent observations relating homogeneous Yang-Baxter deformations based on non-abelian r-matrices to the undeformed AdS_5 x S^5 model by a combination of T-dualities and non-linear coordinate redefinitions. This also includes the special case of deformations based on abelian r-matrices, which correspond to TsT transformations: they are equivalent to non-abelian duals of the original model with respect to a central extension of abelian subalgebras.
We use analytical bootstrap techniques to study supersymmetric monodromy defects in the critical Wess-Zumino model. In preparation for our main result we first study two related systems which are interesting on their own: general monodromy defects (n o susy), and the $varepsilon$-expansion bootstrap for the Wess-Zumino model (no defects). For general monodromy defects we discuss some subtleties specific to the codimension two case. In particular, conformal blocks and the Lorentzian inversion formula have to be slightly modified in order to accommodate odd-spin operators that can have a non-zero one-point function. In the Wess-Zumino model we initiate the $varepsilon$-expansion bootstrap for four-point functions of chiral operators, with the goal of obtaining spectral information about the bulk theory. We then proceed to tackle the harder technical problem of analyzing monodromy defects in the presence of supersymmetry. We use inversion formula technology and spectral data coming from our four-point function analysis, in order to completely bootstrap two-point functions of chiral operators at leading order in $varepsilon$. Our result can be written in terms of novel special functions which we analyze in detail, and allows us to efficiently extract the CFT data that characterizes the correlator.
We consider a Galilean N=2 supersymmetric theory in 2+1 dimensions with F-term couplings, obtained by null reduction of a relativistic Wess-Zumino model. We compute quantum corrections and we check that, as for the relativistic parent theory, the F-t erm does not receive quantum corrections. Even more, we find evidence that the causal structure of the non-relativistic dynamics together with particle number conservation constrain the theory to be one-loop exact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا