ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Investigation of Triexciton Stabilization in Diamond with Multiple Valleys and Bands

50   0   0.0 ( 0 )
 نشر من قبل Hiroki Katow
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of polyexcitons, the $N$-body complexes of excitons for $N > 2$ in 3D bulk systems, has been controversial for more than 40 years since its first theoretical suggestion. We investigated the stability of fundamental excitonic complexes in diamond numerically with the stochastic variational method (SVM) and an explicitly correlated Gaussian (ECG) basis. The electron-hole many-body system is described by an effective mass Hamiltonian. Our model includes the effective mass anisotropy and multiple valley and band degrees of freedom. We show that the excitons, trions, biexcitons, charged biexcitons, and triexcitons are stable in diamond. Numerical calculations reproduce from 81% to 86% of the experimentally reported binding energies for neutral bound states.

قيم البحث

اقرأ أيضاً

The diamond and zinc-blende semiconductors are well-known and have been widely studied for decades. Yet, their electronic structure still surprises with unexpected topological properties of the valence bands. In this joint theoretical and experimenta l investigation we demonstrate for the benchmark compounds InSb and GaAs that the electronic structure features topological surface states below the Fermi energy. Our parity analysis shows that the spin-orbit split-off band near the valence band maximum exhibits a strong topologically non-trivial behavior characterized by the $mathcal{Z}_2$ invariants $(1;000)$. The non-trivial character emerges instantaneously with non-zero spin-orbit coupling, in contrast to the conventional topological phase transition mechanism. textit{Ab initio}-based tight-binding calculations resolve topological surface states in the occupied electronic structure of InSb and GaAs, further confirmed experimentally by soft X-ray angle-resolved photoemission from both materials. Our findings are valid for all other materials whose valence bands are adiabatically linked to those of InSb, i.e., many diamond and zinc-blende semiconductors, as well as other related materials, such as half-Heusler compounds.
Two-dimensional electrons in AlAs quantum wells occupy multiple conduction-band minima at the X- points of the Brillouin zone. These valleys have large effective mass and g-factor compared to the stan-dard GaAs electrons, and are also highly anisotro pic. With proper choice of well width and by applying symmetry-breaking strain in the plane, one can control the occupation of different valleys thus rendering a system with tuneable effective mass, g-factor, Fermi contour anisotropy, and valley degeneracy. Here we review some of the rich physics that this system has allowed us to explore.
The double-resonance (DR) Raman process is a signature of all sp2 carbon material and provide fundamental information of the electronic structure and phonon dispersion in graphene, carbon nanotubes and different graphite-type materials. We have perfo rmed in this work the study of different DR Raman bands of rhombohedral graphite using five different excitation laser energies and obtained the dispersion of the different DR features by changing the laser energy. Results are compared with those of Bernal graphite and shows that rhombohedral graphite exhibit a richer DR Raman spectrum. For example, the 2D band of rhombohedral graphite is broader and composed by several maxima that exhibit different dispersive behavior. The occurrence of more DR conditions in rhombohedral graphite is ascribed to the fact that the volume of its Brillouin zone (BZ) is twice the volume of the Bernal BZ, allowing thus more channels for the resonance condition. The spectra of the intervalley TO-LA band of rhombohedral graphite, around 2450 cm-1, is also broader and richer in features compared to that of Bernal graphite. Results and analysis of the spectral region 1700-1850 cm-1, where different intravalley processes involving acoustic and optical phonons occurs, are also presented.
We study the problem of glassy relaxations in the presence of an external field in the highly controlled context of a spin-glass simulation. We consider a small spin glass in three dimensions (specifically, a lattice of size L=8, small enough to be e quilibrated through a Parallel Tempering simulations at low temperatures, deep in the spin glass phase). After equilibrating the sample, an external field is switched on, and the subsequent dynamics is studied. The field turns out to reduce the relaxation time, but huge statistical fluctuations are found when different samples are compared. After taking care of these fluctuations we find that the expected linear regime is very narrow. Nevertheless, when regarded as a purely numerical method, we find that the external field is extremely effective in reducing the relaxation times.
We theoretically investigate how each orbital and valley play a role for high thermoelectric performance of SnSe. In the hole-doped regime, two kinds of valence band valleys contribute to its transport properties: one is the valley near the U-Z line, mainly consisting of the Se-$p_z$ orbitals, and the other is the one along the $Gamma$-Y line, mainly consisting of the Se-$p_y$ orbitals. Whereas the former valley plays a major role in determining the transport properties at room temperature, the latter one also offers comparable contribution and so the band structure exhibits multi-valley character by increasing the temperature. In the electron-doped regime, the conduction band valley around the $Gamma$ point solely contributes to the thermoelectric performance, where the quasi-one-dimensional electronic structure along the $a$-axis is crucial. This study provides an important knowledge for the thermoelectric properties of SnSe, and will be useful for future search of high-performance thermoelectric materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا