ﻻ يوجد ملخص باللغة العربية
We study the problem of glassy relaxations in the presence of an external field in the highly controlled context of a spin-glass simulation. We consider a small spin glass in three dimensions (specifically, a lattice of size L=8, small enough to be equilibrated through a Parallel Tempering simulations at low temperatures, deep in the spin glass phase). After equilibrating the sample, an external field is switched on, and the subsequent dynamics is studied. The field turns out to reduce the relaxation time, but huge statistical fluctuations are found when different samples are compared. After taking care of these fluctuations we find that the expected linear regime is very narrow. Nevertheless, when regarded as a purely numerical method, we find that the external field is extremely effective in reducing the relaxation times.
The Sherrington-Kirkpatrick spin-glass model is investigated by means of Monte Carlo simulations employing a combination of the multi-overlap algorithm with parallel tempering methods. We investigate the finite-size scaling behaviour of the free-ener
Fossil amber offers the unique opportunity of investigating an amorphous material which has been exploring its energy landscape for more than 110 Myears of natural aging. By applying different x-ray scattering methods to amber before and after anneal
The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has b
Disconnectivity graphs are used to visualize the minima and the lowest energy barriers between the minima of complex systems. They give an easy and intuitive understanding of the underlying energy landscape and, as such, are excellent tools for under
We have introduced a variational method to improve the computation of integrated correlation times in the Parallel Tempering Dynamics, obtaining a better estimate (a lower bound, at least) of the exponential correlation time. Using this determination