ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature- and doping-dependent roles of valleys in thermoelectric performance of SnSe: a first-principles study

284   0   0.0 ( 0 )
 نشر من قبل Hitoshi Mori
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate how each orbital and valley play a role for high thermoelectric performance of SnSe. In the hole-doped regime, two kinds of valence band valleys contribute to its transport properties: one is the valley near the U-Z line, mainly consisting of the Se-$p_z$ orbitals, and the other is the one along the $Gamma$-Y line, mainly consisting of the Se-$p_y$ orbitals. Whereas the former valley plays a major role in determining the transport properties at room temperature, the latter one also offers comparable contribution and so the band structure exhibits multi-valley character by increasing the temperature. In the electron-doped regime, the conduction band valley around the $Gamma$ point solely contributes to the thermoelectric performance, where the quasi-one-dimensional electronic structure along the $a$-axis is crucial. This study provides an important knowledge for the thermoelectric properties of SnSe, and will be useful for future search of high-performance thermoelectric materials.


قيم البحث

اقرأ أيضاً

We present results of electronic band structure, Fermi surface and electron transport properties calculations in orthorhombic $n$- and $p$-type SnSe, applying Korringa-Kohn-Rostoker method and Boltzmann transport approach. The analysis accounted for temperature effect on crystallographic parameters in $Pnma$ structure as well as the phase transition to $CmCm$ structure at $T_csim 807 $K. Remarkable modifications of conduction and valence bands were notified upon varying crystallographic parameters within the structure before $T_c$, while the phase transition mostly leads to jump in the band gap value. The diagonal components of kinetic parameter tensors (velocity, effective mass) and resulting transport quantity tensors (electrical conductivity $sigma$, thermopower $S$ and power factor PF) were computed in wide range of temperature ($15-900 $K) and, hole ($p-$type) and electron ($n-$type) concentration ($10^{17}-10^{21}$ cm$^{-3}$). SnSe is shown to have strong anisotropy of the electron transport properties for both types of charge conductivity, as expected for the layered structure. In general, $p$-type effective masses are larger than $n$-type ones. Interestingly, $p$-type SnSe has strongly non-parabolic dispersion relations, with the pudding-mold-like shape of the highest valence band. The analysis of $sigma$, $S$ and PF tensors indicates, that the inter-layer electron transport is beneficial for thermoelectric performance in $n$-type SnSe, while this direction is blocked in $p$-type SnSe, where in-plane transport is preferred. Our results predict, that $n$-type SnSe is potentially even better thermoelectric material than $p$-type one. Theoretical results are compared with single crystal $p$-SnSe measurements, and good agreement is found.
Rare-earth nickelates R$^{3+}$Ni$^{3+}$O$_3$ (R=Lu-Pr, Y) show a striking metal-insulator transition in their bulk phase whose temperature can be tuned by the rare-earth radius. These compounds are also the parent phases of the newly identified infin ite layer RNiO2 superconductors. Although intensive theoretical works have been devoted to understand the origin of the metal-insulator transition in the bulk, there have only been a few studies on the role of hole and electron doping by rare-earth substitutions in RNiO$_3$ materials. Using first-principles calculations based on density functional theory (DFT) we study the effect of hole and electron doping in a prototypical nickelate SmNiO3. We perform calculations without Hubbard-like U potential on Ni 3d levels but with a meta-GGA better amending self-interaction errors. We find that at low doping, polarons form with intermediate localized states in the band gap resulting in a semiconducting behavior. At larger doping, the intermediate states spread more and more in the band gap until they merge either with the valence (hole doping) or the conduction (electron doping) band, ultimately resulting in a metallic state at 25% of R cation substitution. These results are reminiscent of experimental data available in the literature and demonstrate that DFT simulations without any empirical parameter are qualified for studying doping effects in correlated oxides and to explore the mechanisms underlying the superconducting phase of rare-earth nickelates.
Excellent thermoelectric performance in the out-of-layer n-doped SnSe has been observed experimentally (Chang et al., Science 360, 778-783 (2018)). However, a first-principles investigation of the dominant scattering mechanisms governing all thermoel ectric transport properties is lacking. In the present work, by applying extensive first-principles calculations of electron-phonon coupling associated with the calculation of the scattering by ionized impurities, we investigate the reasons behind the superior figure of merit as well as the enhancement of zT above 600 K in n-doped out-of-layer SnSe, as compared to p-doped SnSe with similar carrier densities. For the n-doped case, the relaxation time is dominated by ionized impurity scattering and increases with temperature, a feature that maintains the power factor at high values at higher temperatures and simultaneously causes the carrier thermal conductivity at zero electric current (k_el) to decrease faster for higher temperatures, leading to an ultrahigh-zT = 3.1 at 807 K. We rationalize the roles played by k_el and k^0 (the thermal conductivity due to carrier transport under isoelectrochemical conditions) in the determination of zT. Our results show the ratio between k^0 and the lattice thermal conductivity indeed corresponds to the upper limit for zT, whereas the difference between calculated zT and the upper limit is proportional to k_el.
The electronic and phonon transport properties of quaternary tetradymite BiSbSeTe2 are investigated using first-principles approach and Boltzmann transport theory. Unlike the binary counterpart Bi2Te3, we obtain a pair of Rashba splitting bands induc ed by the absence of inversion center. Such unique characteristic could lead to a large Seebeck coefficient even at relatively higher carrier concentration. Besides, we find an ultralow lattice thermal conductivity of BiSbSeTe2, especially along the interlayer direction, which can be traced to the extremely small phonon relaxation time mainly induced by the mixed covalent bonds. As a consequence, a considerably large ZT value of ~2.0 can be obtained at 500 K, indicating that the unique lattice structure of BiSbSeTe2 caused by isoelectronic substitution could be an advantage to achieving high thermoelectric performance.
We present a study of the electronic properties of Tl5Te3, BiTl9Te6 and SbTl9Te6 compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the experimental data. Th e band gap of BiTl9Te6 and SbTl9Te6 compounds are found to be equal to 0.589 eV and 0.538 eV, respectively and are in agreement with the available experimental data. To compare the thermoelectric properties of the different compounds we calculate their thermopower using Motts law and show, as expected experimentally, that the substituted tellurides have much better thermoelectric properties compared to the pure compound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا