ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong ferromagnetic exchange interaction in the parent state of the superconductivity in BaFe$_2$S$_3$

72   0   0.0 ( 0 )
 نشر من قبل Meng Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe$_2$S$_3$, where a superconducting transition was observed under pressure [H. Takahashi {it et al.}, Nat. Mater. 14, 1008-1012 (2015); T. Yamauchi {it et al.}, Phys. Rev. Lett. 115, 246402 (2015)]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest neighbor ferromagnetic exchange interaction ($SJ_R=-71pm4$ meV) along the rung direction, an antiferromagnetic $SJ_L=49pm3$ meV along the leg direction and a ferromagnetic $SJ_2=-15pm2$ meV along the diagonal direction. Our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.



قيم البحث

اقرأ أيضاً

We report a comprehensive study of the spin ladder compound BaFe$_2$S$_{2.5}$Se$_{0.5}$ using neutron diffraction, inelastic neutron scattering, high pressure synchrotron diffraction, and high pressure transport techniques. We find that BaFe$_2$S$_{2 .5}$Se$_{0.5}$ possesses the same $Cmcm$ structure and stripe antiferromagnetic order as does BaFe$_2$S$_3$, but with a reduced N{{e}}el temperature of $T_N=98$ K compared to 120 K for the undoped system, and a slightly increased ordered moment of 1.40$mu_B$ per iron. The low-energy spin excitations in BaFe$_2$S$_{2.5}$Se$_{0.5}$ are likewise similar to those observed in BaFe$_2$S$_{3}$. However, unlike the reports of superconductivity in BaFe$_2$S$_3$ below $T_c sim 14$~K under pressures of 10~GPa or more, we observe no superconductivity in BaFe$_2$S$_{2.5}$Se$_{0.5}$ at any pressure up to 19.7~GPa. In contrast, the resistivity exhibits an upturn at low temperature under pressure. Furthermore, we show that additional high-quality samples of BaFe$_2$S$_3$ synthesized for this study likewise fail to become superconducting under pressure, instead displaying a similar upturn in resistivity at low temperature. These results demonstrate that microscopic, sample-specific details play an important role in determining the ultimate electronic ground state in this spin ladder system. We suggest that the upturn in resistivity at low temperature in both BaFe$_2$S$_3$ and BaFe$_2$S$_{2.5}$Se$_{0.5}$ may result from Anderson localization induced by S vacancies and random Se substitutions, enhanced by the quasi-one-dimensional ladder structure.
We report quantum oscillation measurements that enable the direct observation of the Fermi surface of the low temperature ground state of ba122. From these measurements we characterize the low energy excitations, revealing that the Fermi surface is r econstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface.
184 - L. J. Li , Q. B. Wang , Y. K. Luo 2008
A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature $T_c^{on}$ reaches a maximum of 20.5 K at $x$ = 0.096, and it drops to below 4 K as $x$ $geq$ 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.
The electronic structure of BaFe$_2X_3$ ($X$ = S and Se) and CsFe$_2$Se$_3$ in which two-leg ladders are formed by the Fe sites are studied by means of x-ray absorption and resonant inelastic x-ray scattering spectroscopy. The x-ray absorption spectr a at the Fe L edges for BaFe$_2X_3$ exhibit two components, indicating that itinerant and localized Fe 3$d$ sites coexist. Substantial x-ray linear dichroism (XLD) is observed in polarization dependent spectra, indicating the existence of orbital order or fluctuation in the Fe-ladder even above the N{e}el temperature $T_N$. Direct exchange interaction along the legs of the Fe-ladder stabilizes the orbital and antiferromagnetic orders in BaFe$_2$S$_3$, while the ferromagnetic molecular orbitals are realized between the rungs in CsFe$_2$Se$_3$.
209 - L. X. Yang , Y. Zhang , H. W. Ou 2008
The magnetic properties in the parent compounds are often intimately related to the microscopic mechanism of superconductivity. Here we report the first direct measurements on the electronic structure of a parent compound of the newly discovered iron -based superconductor, BaFe$_2$As$_2$, which provides a foundation for further studies. We show that the energy of the spin density wave (SDW) in BaFe$_2$As$_2$ is lowered through exotic exchange splitting of the band structure, rather than Fermi surface nesting of itinerant electrons. This clearly demonstrates that a metallic SDW state could be solely induced by interactions of local magnetic moments, resembling the nature of antiferromagnetic order in cuprate parent compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا