ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-superconducting electronic ground state in pressurized BaFe$_2$S$_3$ and BaFe$_2$S$_{2.5}$Se$_{0.5}$

78   0   0.0 ( 0 )
 نشر من قبل Meng Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comprehensive study of the spin ladder compound BaFe$_2$S$_{2.5}$Se$_{0.5}$ using neutron diffraction, inelastic neutron scattering, high pressure synchrotron diffraction, and high pressure transport techniques. We find that BaFe$_2$S$_{2.5}$Se$_{0.5}$ possesses the same $Cmcm$ structure and stripe antiferromagnetic order as does BaFe$_2$S$_3$, but with a reduced N{{e}}el temperature of $T_N=98$ K compared to 120 K for the undoped system, and a slightly increased ordered moment of 1.40$mu_B$ per iron. The low-energy spin excitations in BaFe$_2$S$_{2.5}$Se$_{0.5}$ are likewise similar to those observed in BaFe$_2$S$_{3}$. However, unlike the reports of superconductivity in BaFe$_2$S$_3$ below $T_c sim 14$~K under pressures of 10~GPa or more, we observe no superconductivity in BaFe$_2$S$_{2.5}$Se$_{0.5}$ at any pressure up to 19.7~GPa. In contrast, the resistivity exhibits an upturn at low temperature under pressure. Furthermore, we show that additional high-quality samples of BaFe$_2$S$_3$ synthesized for this study likewise fail to become superconducting under pressure, instead displaying a similar upturn in resistivity at low temperature. These results demonstrate that microscopic, sample-specific details play an important role in determining the ultimate electronic ground state in this spin ladder system. We suggest that the upturn in resistivity at low temperature in both BaFe$_2$S$_3$ and BaFe$_2$S$_{2.5}$Se$_{0.5}$ may result from Anderson localization induced by S vacancies and random Se substitutions, enhanced by the quasi-one-dimensional ladder structure.

قيم البحث

اقرأ أيضاً

The electronic structure of BaFe$_2X_3$ ($X$ = S and Se) and CsFe$_2$Se$_3$ in which two-leg ladders are formed by the Fe sites are studied by means of x-ray absorption and resonant inelastic x-ray scattering spectroscopy. The x-ray absorption spectr a at the Fe L edges for BaFe$_2X_3$ exhibit two components, indicating that itinerant and localized Fe 3$d$ sites coexist. Substantial x-ray linear dichroism (XLD) is observed in polarization dependent spectra, indicating the existence of orbital order or fluctuation in the Fe-ladder even above the N{e}el temperature $T_N$. Direct exchange interaction along the legs of the Fe-ladder stabilizes the orbital and antiferromagnetic orders in BaFe$_2$S$_3$, while the ferromagnetic molecular orbitals are realized between the rungs in CsFe$_2$Se$_3$.
71 - Meng Wang , S. J. Jin , Ming Yi 2016
Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe$_2$S$_3$, where a superconducting transition was observed under pressure [H. Takahashi {it et al.}, Nat. Mater. 14, 1008-1012 (2015); T. Yamauchi {it et al.}, Phys. Rev. Lett. 115, 246402 (2015)]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest neighbor ferromagnetic exchange interaction ($SJ_R=-71pm4$ meV) along the rung direction, an antiferromagnetic $SJ_L=49pm3$ meV along the leg direction and a ferromagnetic $SJ_2=-15pm2$ meV along the diagonal direction. Our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.
We report experimental studies of a series of BaFe$_2$S$_{3-x}$Se$_x$ ($0leq xleq3$) single crystals and powder specimens using x-ray diffraction, neutron diffraction, muon spin relaxation, and electrical transport measurements. A structural transfor mation from Cmcm (BaFe$_2$S$_3$) to Pnma (BaFe$_2$Se$_3$) was identified around $x = 0.7sim 1$. Neutron diffraction measurements on the samples with $x$ = 0.2, 0.4, and 0.7 reveal that the N${e}$el temperature of the stripe antiferromagnetic order is gradually suppressed from $sim$120 to 85 K, while the magnitude of the ordered Fe$^{2+}$ moments shows very little variation. Similarly, the block antiferromagnetic order in BaFe$_2$Se$_3$ remains robust for $1.5leq xleq3$ with negligible variation in the ordered moment and a slight decrease of the N${e}$el temperature from 250 K ($x=3$) to 225 K ($x=1.5$). The sample with $x=1$ near the Cmcm and Pnma border shows coexisting, two-dimensional, short-range stripe- and block-type antiferromagnetic correlations. The system remains insulating for all $x$, but the thermal activation gap shows an abrupt increase when traversing the boundary from the Cmcm stripe phase to the Pnma block phase. The results demonstrate that the crystal structure, magnetic order, and electronic properties are strongly coupled in the BaFe$_2$S$_{3-x}$Se$_x$ system.
225 - S.-F. Wu , W.-L. Zhang , D. Hu 2016
We use electronic Raman scattering to study the low-energy excitations in BaFe$_2$(As$_{0.5}$P$_{0.5}$)$_2$ ($T_c approx 16$ K) samples. In addition to a superconducting pair breaking peak (2$Delta=6.7$ meV) in the A$_{1g}$ channel with a linear tail towards zero energy, suggesting a nodal gap structure, we detect spectral features associated to Pomeranchuk oscillations in the A$_{1g}$, B$_{1g}$ and B$_{2g}$ channels. We argue that the small Fermi energy of the system is an essential condition for these Pomeranchuk oscillations to be underdamped. The Pomeranchuk oscillations have the same frequencies in the B$_{1g}$ and B$_{2g}$ channels, which we explain by the mixing of these symmetries resulting from the removal of the $sigma_v$ and $sigma_v$ symmetry planes due to a large As/P disorder. Interestingly, we show that the temperature at which the peaks corresponding to the Pomeranchuk oscillations get underdamped is consistent with the non-Fermi liquid to Femi liquid crossover determined by transport, suggesting that the Pomeranchuk instability plays an important role in the low-energy physics of the Fe-based superconductors.
The majority of the iron-based superconductors (FeSCs) exhibit a two-dimensional square lattice structure. Recent reports of pressure-induced superconductivity in the spin-ladder system, BaFe$_2$X$_3$ (X =S,Se), introduce a quasi-one-dimensional prot otype and an insulating parent compound to the FeSCs. Here we report X-ray, neutron diffraction and muon spin relaxation experiments on BaFe$_2$Se$_3$ under hydrostatic pressure to investigate its magnetic and structural properties across the pressure-temperature phase diagram. A structural phase transition was identified at a pressure of 3.7(3) GPa. Neutron diffraction measurements at 6.8(3) GPa and 120 K show that the block magnetism persists even at these high pressures. A steady increase and then fast drop of the magnetic transition temperature $Trm_N$ and greatly reduced moment above the pressure $P_s$ indicate potentially rich and competing phases close to the superconducting phase in this ladder system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا