ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity induced by Ni doping in BaFe$_2$As$_2$

191   0   0.0 ( 0 )
 نشر من قبل Zhuan Xu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature $T_c^{on}$ reaches a maximum of 20.5 K at $x$ = 0.096, and it drops to below 4 K as $x$ $geq$ 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.



قيم البحث

اقرأ أيضاً

Inelastic neutron scattering measurements on Ba(Fe$_{0.963}$Ni$_{0.037}$)$_2$As$_2$ manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at Q$_{AFM}$ a long the orthorhombic a axis, the resonance disperses upwards away from Q$_{AFM}$ along the b axis. In contrast to the downward dispersing resonance and hour-glass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe$_2$As$_2$ compounds possesses a magnon-like upwards dispersion.
Unlike the widely studied $s$-type two-gap superconductor MgB$_2$, the chemically similar compounds ZrB$_2$ and HfB$_2$ do not superconduct above 1 K. Yet, it has been shown that small amounts of self- or extrinsic doping (in particular with vanadium ), can induce superconductivity in these materials. Based on results of different macro- and microscopic measurements, including magnetometry, nuclear magnetic resonance (NMR), resistivity, and muon-spin rotation ($mu$SR), we present a comparative study of Zr$_{0.96}$V$_{0.04}$B$_2$ and Hf$_{0.97}$V$_{0.03}$B$_2$. Their key magnetic and superconducting features are determined and the results are considered within the theoretical framework of multiband superconductivity proposed for MgB$_2$. Detailed Fermi surface (FS) and electronic structure calculations reveal the difference between MgB$_2$ and transition-metal diborides.
We have systematically studied the low-temperature specific heat of the BaFe$_{2-x}$Ni$_x$As$_2$ single crystals covering the whole superconducting dome. Using the nonsuperconducting heavily overdoped x = 0.3 sample as a reference for the phonon cont ribution to the specific heat, we find that the normal-state electronic specific heats in the superconducting samples may have a nonlinear temperature dependence, which challenges previous results in the electron-doped Ba-122 iron-based superconductors. A model based on the presence of ferromagnetic spin fluctuations may explain the data between x = 0.1 and x = 0.15, suggesting the important role of Fermi-surface topology in understanding the normal-state electronic states.
We investigate coherent phonon oscillations of BaFe$_2$As$_2$ using optical pump-probe spectroscopy. Time-resolved optical reflectivity shows periodic modulations due to $A_{1g}$ coherent phonon of $c$-axis arsenic vibrations. Optical probe beams pol arized along the orthorhombic $a$- and $b$-axes reveal that the initial phase of coherent oscillations shows a systematic deviation as a function of temperature, although these oscillations arise from the same $c$-axis arsenic vibrations. The oscillation-phase remains anisotropic even in the tetragonal structure, reflecting a nematic response of BaFe$_2$As$_2$. Our study suggests that investigation on the phase of coherent phonon oscillations in optical reflectivity can offer unique evidence of a nematic order strongly coupled to a lattice instability.
The newly discovered BaPt$_2$As$_2$ shows a structural distortion at around 275~K, followed by the emergence of superconductivity at lower temperatures. Here we identify the presence of charge density wave (CDW) order at room temperature and ambient pressure using single crystal x-ray diffraction, with both a superlattice and an incommensurate modulation, where there is a change of the superlattice structure below $simeq$ 275~K. Upon applying pressure, BaPt$_2$As$_2$ shows a rich temperature-pressure phase diagram with multiple pressure-induced transitions at high temperatures, the emergence or disappearance of which are correlated with sudden changes in the superconducting transition temperature $T_c$. These findings demonstrate that BaPt$_2$As$_2$ is a promising new system for studying competing interactions and the relationship between high-temperature electronic instabilities and superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا