ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Collaborative Filtering with Compound Poisson Factorization

56   0   0.0 ( 0 )
 نشر من قبل Ghassen Jerfel
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Model-based collaborative filtering analyzes user-item interactions to infer latent factors that represent user preferences and item characteristics in order to predict future interactions. Most collaborative filtering algorithms assume that these latent factors are static, although it has been shown that user preferences and item perceptions drift over time. In this paper, we propose a conjugate and numerically stable dynamic matrix factorization (DCPF) based on compound Poisson matrix factorization that models the smoothly drifting latent factors using Gamma-Markov chains. We propose a numerically stable Gamma chain construction, and then present a stochastic variational inference approach to estimate the parameters of our model. We apply our model to time-stamped ratings data sets: Netflix, Yelp, and Last.fm, where DCPF achieves a higher predictive accuracy than state-of-the-art static and dynamic factorization models.


قيم البحث

اقرأ أيضاً

In this paper, we consider recommender systems with side information in the form of graphs. Existing collaborative filtering algorithms mainly utilize only immediate neighborhood information and have a hard time taking advantage of deeper neighborhoo ds beyond 1-2 hops. The main caveat of exploiting deeper graph information is the rapidly growing time and space complexity when incorporating information from these neighborhoods. In this paper, we propose using Graph DNA, a novel Deep Neighborhood Aware graph encoding algorithm, for exploiting deeper neighborhood information. DNA encoding computes approximate deep neighborhood information in linear time using Bloom filters, a space-efficient probabilistic data structure and results in a per-node encoding that is logarithmic in the number of nodes in the graph. It can be used in conjunction with both feature-based and graph-regularization-based collaborative filtering algorithms. Graph DNA has the advantages of being memory and time efficient and providing additional regularization when compared to directly using higher order graph information. We conduct experiments on real-world datasets, showing graph DNA can be easily used with 4 popular collaborative filtering algorithms and consistently leads to a performance boost with little computational and memory overhead.
We focus on the problem of streaming recommender system and explore novel collaborative filtering algorithms to handle the data dynamicity and complexity in a streaming manner. Although deep neural networks have demonstrated the effectiveness of reco mmendation tasks, it is lack of explorations on integrating probabilistic models and deep architectures under streaming recommendation settings. Conjoining the complementary advantages of probabilistic models and deep neural networks could enhance both model effectiveness and the understanding of inference uncertainties. To bridge the gap, in this paper, we propose a Coupled Variational Recurrent Collaborative Filtering (CVRCF) framework based on the idea of Deep Bayesian Learning to handle the streaming recommendation problem. The framework jointly combines stochastic processes and deep factorization models under a Bayesian paradigm to model the generation and evolution of users preferences and items popularities. To ensure efficient optimization and streaming update, we further propose a sequential variational inference algorithm based on a cross variational recurrent neural network structure. Experimental results on three benchmark datasets demonstrate that the proposed framework performs favorably against the state-of-the-art methods in terms of both temporal dependency modeling and predictive accuracy. The learned latent variables also provide visualized interpretations for the evolution of temporal dynamics.
The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Neve rtheless, the formation of user-item interactions typically arises from highly complex latent purchasing motivations, such as high cost performance or eye-catching appearance, which are indistinguishably represented by the edges. The existing approaches still remain the differences between various purchasing motivations unexplored, rendering the inability to capture fine-grained user preference. Therefore, in this paper we propose a novel Multi-Component graph convolutional Collaborative Filtering (MCCF) approach to distinguish the latent purchasing motivations underneath the observed explicit user-item interactions. Specifically, there are two elaborately designed modules, decomposer and combiner, inside MCCF. The former first decomposes the edges in user-item graph to identify the latent components that may cause the purchasing relationship; the latter then recombines these latent components automatically to obtain unified embeddings for prediction. Furthermore, the sparse regularizer and weighted random sample strategy are utilized to alleviate the overfitting problem and accelerate the optimization. Empirical results on three real datasets and a synthetic dataset not only show the significant performance gains of MCCF, but also well demonstrate the necessity of considering multiple components.
Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the wel l-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework.
In many businesses, and particularly in finance, the behavior of a client might drastically change over time. It is consequently crucial for recommender systems used in such environments to be able to adapt to these changes. In this study, we propose a novel collaborative filtering algorithm that captures the temporal context of a user-item interaction through the users and items recent interaction histories to provide dynamic recommendations. The algorithm, designed with issues specific to the financial world in mind, uses a custom neural network architecture that tackles the non-stationarity of users and items behaviors. The performance and properties of the algorithm are monitored in a series of experiments on a G10 bond request for quotation proprietary database from BNP Paribas Corporate and Institutional Banking.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا