ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering

82   0   0.0 ( 0 )
 نشر من قبل Liwei Wu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider recommender systems with side information in the form of graphs. Existing collaborative filtering algorithms mainly utilize only immediate neighborhood information and have a hard time taking advantage of deeper neighborhoods beyond 1-2 hops. The main caveat of exploiting deeper graph information is the rapidly growing time and space complexity when incorporating information from these neighborhoods. In this paper, we propose using Graph DNA, a novel Deep Neighborhood Aware graph encoding algorithm, for exploiting deeper neighborhood information. DNA encoding computes approximate deep neighborhood information in linear time using Bloom filters, a space-efficient probabilistic data structure and results in a per-node encoding that is logarithmic in the number of nodes in the graph. It can be used in conjunction with both feature-based and graph-regularization-based collaborative filtering algorithms. Graph DNA has the advantages of being memory and time efficient and providing additional regularization when compared to directly using higher order graph information. We conduct experiments on real-world datasets, showing graph DNA can be easily used with 4 popular collaborative filtering algorithms and consistently leads to a performance boost with little computational and memory overhead.

قيم البحث

اقرأ أيضاً

The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Neve rtheless, the formation of user-item interactions typically arises from highly complex latent purchasing motivations, such as high cost performance or eye-catching appearance, which are indistinguishably represented by the edges. The existing approaches still remain the differences between various purchasing motivations unexplored, rendering the inability to capture fine-grained user preference. Therefore, in this paper we propose a novel Multi-Component graph convolutional Collaborative Filtering (MCCF) approach to distinguish the latent purchasing motivations underneath the observed explicit user-item interactions. Specifically, there are two elaborately designed modules, decomposer and combiner, inside MCCF. The former first decomposes the edges in user-item graph to identify the latent components that may cause the purchasing relationship; the latter then recombines these latent components automatically to obtain unified embeddings for prediction. Furthermore, the sparse regularizer and weighted random sample strategy are utilized to alleviate the overfitting problem and accelerate the optimization. Empirical results on three real datasets and a synthetic dataset not only show the significant performance gains of MCCF, but also well demonstrate the necessity of considering multiple components.
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender syst ems. These methods often make recommendations based on the learned user and item embeddings. However, we found that they do not perform well wit sparse user-item graphs which are quite common in real-world recommendations. Therefore, in this work, we introduce a novel perspective to build GNN-based CF methods for recommendations which leads to the proposed framework Localized Graph Collaborative Filtering (LGCF). One key advantage of LGCF is that it does not need to learn embeddings for each user and item, which is challenging in sparse scenarios. Alternatively, LGCF aims at encoding useful CF information into a localized graph and making recommendations based on such graph. Extensive experiments on various datasets validate the effectiveness of LGCF especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides complementary information to the embedding-based CF model which can be utilized to boost recommendation performance.
While the celebrated graph neural networks yield effective representations for individual nodes of a graph, there has been relatively less success in extending to the task of graph similarity learning. Recent work on graph similarity learning has con sidered either global-level graph-graph interactions or low-level node-node interactions, however ignoring the rich cross-level interactions (e.g., between each node of one graph and the other whole graph). In this paper, we propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects in an end-to-end fashion. In particular, the proposed MGMN consists of a node-graph matching network for effectively learning cross-level interactions between each node of one graph and the other whole graph, and a siamese graph neural network to learn global-level interactions between two input graphs. Furthermore, to compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks with different sizes in order to evaluate the effectiveness and robustness of our models. Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks. Compared with previous work, MGMN also exhibits stronger robustness as the sizes of the two input graphs increase.
Personalized recommendation is ubiquitous, playing an important role in many online services. Substantial research has been dedicated to learning vector representations of users and items with the goal of predicting a users preference for an item bas ed on the similarity of the representations. Techniques range from classic matrix factorization to more recent deep learning based methods. However, we argue that existing methods do not make full use of the information that is available from user-item interaction data and the similarities between user pairs and item pairs. In this work, we develop a graph convolution-based recommendation framework, named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF), which explicitly incorporates multiple graphs in the embedding learning process. Multi-GCCF not only expressively models the high-order information via a partite user-item interaction graph, but also integrates the proximal information by building and processing user-user and item-item graphs. Furthermore, we consider the intrinsic difference between user nodes and item nodes when performing graph convolution on the bipartite graph. We conduct extensive experiments on four publicly accessible benchmarks, showing significant improvements relative to several state-of-the-art collaborative filtering and graph neural network-based recommendation models. Further experiments quantitatively verify the effectiveness of each component of our proposed model and demonstrate that the learned embeddings capture the important relationship structure.
Learning node representations that incorporate information from graph structure benefits wide range of tasks on graph. The majority of existing graph neural networks (GNNs) have limited power in capturing position information for a given node. The id ea of positioning nodes with selected anchors has been exploited, yet mainly relying on explicit labeling of distance information. Here we propose Graph Inference Representation (GIR), an anchor based GNN model encoding path information related to pre-selected anchors for each node. Abilities to get position-aware embeddings are theoretically and experimentally investigated on GIR and its core variants. Further, the complementarity between GIRs and typical GNNs is demonstrated. We show that GIRs get outperformed results in position-aware scenarios, and performances on typical GNNs could be improved by fusing GIR embeddings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا