ﻻ يوجد ملخص باللغة العربية
Magnetism in two-dimensional materials is not only of fundamental scientific interest but also a promising candidate for numerous applications. However, studies so far, especially the experimental ones, have been mostly limited to the magnetism arising from defects, vacancies, edges or chemical dopants which are all extrinsic effects. Here, we report on the observation of intrinsic antiferromagnetic ordering in the two-dimensional limit. By monitoring the Raman peaks that arise from zone folding due to antiferromagnetic ordering at the transition temperature, we demonstrate that FePS3 exhibits an Ising-type antiferromagnetic ordering down to the monolayer limit, in good agreement with the Onsager solution for two-dimensional order-disorder transition. The transition temperature remains almost independent of the thickness from bulk to the monolayer limit with TN ~118 K, indicating that the weak interlayer interaction has little effect on the antiferromagnetic ordering.
Two-dimensional (2D) magnetic materials have attracted much recent interest with unique properties emerging at the few-layer limit. Beyond the reported impacts on the static magnetic properties, the effects of reducing the dimensionality on the magne
Recent discoveries of intrinsic two-dimensional (2D) ferromagnetism in insulating/semiconducting van der Waals (vdW) crystals open up new possibilities for studying fundamental 2D magnetism and devices employing localized spins. However, a vdW materi
In cavity quantum electrodynamics, the multiple reflections of a photon between two mirrors defining a cavity is exploited to enhance the light-coupling of an intra-cavity atom. We show that this paradigm for enhancing the interaction of a flying par
The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared
The interplay between band topology and magnetic order plays a key role in quantum states of matter. MnBi2Te4, a van der Waals magnet, has recently emerged as an exciting platform for exploring Chern insulator physics. Its layered antiferromagnetic o