ﻻ يوجد ملخص باللغة العربية
In cavity quantum electrodynamics, the multiple reflections of a photon between two mirrors defining a cavity is exploited to enhance the light-coupling of an intra-cavity atom. We show that this paradigm for enhancing the interaction of a flying particle with a localized object can be generalized to spintronics based on van der Waals 2D magnets. Upon tunneling through a magnetic bilayer, we find the spin transfer torques per electron incidence can become orders of magnitude larger than $hbar/2$, made possible by electrons multi-reflection path through the ferromagnetic monolayers as an intermediate of their angular momentum transfer. Over a broad energy range around the tunneling resonances, the damping-like spin transfer torque per electron tunneling features a universal value of $frac{hbar}{2} tan{frac{theta}{2}}$, depending only on the angle $theta$ between the magnetizations. These findings expand the scope of magnetization manipulations for high-performance and high-density storage based on van der Waals magnets.
We consider a quasi one-dimensional configuration consisting of two small pieces of ferromagnetic material separated by a metallic one and contacted by two metallic leads. A spin-polarized current is injected from one lead. Our goal is to investigate
The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic la
Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven FMR technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, were analysed to determine the symmetries and r
The manipulation of the magnetization by spin-orbit torques (SOTs) has recently been extensively studied due to its potential for efficiently writing information in magnetic memories. Particular attention is paid to non-centrosymmetric systems with s
Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional (2D) layers, including graphene, hexagonal-boron nitride, and transition metal dichalcogenides (M