ﻻ يوجد ملخص باللغة العربية
The interplay between band topology and magnetic order plays a key role in quantum states of matter. MnBi2Te4, a van der Waals magnet, has recently emerged as an exciting platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer-number dependent topological states, supported by promising edge transport measurements. Furthermore, it becomes a Chern insulator when all spins are aligned by an applied magnetic field. However, the evolution of the bulk electronic structure as the magnetic state is continuously tuned and its dependence on layer number remains unexplored. Here, employing multimodal probes, we establish one-to-one correspondence between bulk electronic structure, magnetic state, topological order, and layer thickness in atomically thin MnBi2Te4 devices. As the magnetic state is tuned through the canted magnetic phase, we observe a band crossing, i.e., the closing and reopening of the bulk bandgap, corresponding to the concurrent topological phase transition. Surprisingly, we find that the even- and odd-layer number devices exhibit a similar topological phase transition coupled to magnetic states, distinct from recent theoretical and experimental reports. Our findings shed new light on the interplay between band topology and magnetic order in this newly discovered topological magnet and validate the band crossing with concurrent measurements of topological invariant in a continuously tuned topological phase transition.
The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chira
Three-dimensional (3D) compensated MnBi2Te4 is antiferromagnetic, but undergoes a spin-flop transition at intermediate fields, resulting in a canted phase before saturation. In this work, we experimentally show that the anomalous Hall effect (AHE) in
Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the ma
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synth
Based on first-principles calculations and symmetry analysis, we predict atomically thin ($1-N$ layers) 2H group-VIB TMDs $MX_2$ ($M$ = Mo, W; $X$ = S, Se, Te) are large-gap higher-order topological crystalline insulators protected by $C_3$ rotation