ﻻ يوجد ملخص باللغة العربية
We address the quantum-critical behavior of a two-dimensional itinerant ferromagnetic systems described by a spin-fermion model in which fermions interact with close to critical bosonic modes. We consider Heisenberg ferromagnets, Ising ferromagnets, and the Ising nematic transition. Mean-field theory close to the quantum critical point predicts a superconducting gap with spin-triplet symmetry for the ferromagnetic systems and a singlet gap for the nematic scenario. Studying fluctuations in this ordered phase using a nonlinear sigma model, we find that these fluctuations are not suppressed by any small parameter. As a result, we find that a superconducting quasi-long-range order is still possible in the Ising-like models but long-range order is destroyed in Heisenberg ferromagnets.
One of the most exciting discoveries in strongly correlated systems has been the existence of a superconducting dome on heavy fermions close to the quantum critical point where antiferromagnetic order disappears. It is hard even for the most skeptica
We study high frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynami
Spontaneous phase separation instabilities with the formation of various types of charge and spin pairing (pseudo)gaps in $U>0$ Hubbard model including the {it next nearest neighbor coupling} are calculated with the emphasis on the two-dimensional (s
We study the impurity entanglement entropy $S_e$ in quantum impurity models that feature a Kondo-destruction quantum critical point (QCP) arising from a pseudogap in the conduction-band density of states or from coupling to a bosonic bath. On the loc
For a system near a quantum critical point (QCP), above its lower critical dimension $d_L$, there is in general a critical line of second order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phas