ﻻ يوجد ملخص باللغة العربية
Ultrarelativistic heavy ion collisions produce a quark-gluon matter which lies in the future light cone originating from given points on the $t=z=0$ plane of the Minkowski spacetime manifold. We show that in a weak coupling regime the Minkowski vacuum of massless fields presents itself in the Little Bang region as a thermal state of low $p_{T}$ particles, in close analogy to the Unruh effect for uniformly accelerated observers which are causally restricted to a Rindler wedge. It can shed some light on the mechanisms of early time thermalization in ultrarelativistic heavy ion collisions.
Particle production by expanding in the future light cone scalar quantum field is studied by assuming that the initial state is associated with the quasiequilibrium statistical operator corresponding to fluid dynamics. We calculate particle productio
We make a theoretical and experimental summary of the state-of-the-art status of hot and dense QCD matter studies on selected topics. We review the Beam Energy Scan program for the QCD phase diagram and present the current status of search for QCD Cr
The abundances of anti-protons and protons are considered within momentum-integrated Boltzmann equations describing Little Bangs, i.e., fireballs created in relativistic heavy-ion collisions. Despite of a large anti-proton annihilation cross section
We derive a formula that defines quantum fluctuations of energy in subsystems of a hot relativistic gas. For small subsystem sizes we find substantial increase of fluctuations compared to those known from standard thermodynamic considerations. Howeve
The second-order hydrodynamic equations for evolution of shear and bulk viscous pressure have been derived within the framework of covariant kinetic theory based on the effective fugacity quasiparticle model. The temperature-dependent fugacity parame