ﻻ يوجد ملخص باللغة العربية
Particle production by expanding in the future light cone scalar quantum field is studied by assuming that the initial state is associated with the quasiequilibrium statistical operator corresponding to fluid dynamics. We calculate particle production from a longitudinally boost-invariant expanding quantum field designed as a simple but reliable model for the central rapidity region of a relativistic collision. Exact diagonalization of the model is performed by introducing a notion of quasiparticles.
Ultrarelativistic heavy ion collisions produce a quark-gluon matter which lies in the future light cone originating from given points on the $t=z=0$ plane of the Minkowski spacetime manifold. We show that in a weak coupling regime the Minkowski vacuu
We make a theoretical and experimental summary of the state-of-the-art status of hot and dense QCD matter studies on selected topics. We review the Beam Energy Scan program for the QCD phase diagram and present the current status of search for QCD Cr
One of the most striking examples for the production of particles out of the quantum vacuum due to external conditions is cosmological particle creation, which is caused by the expansion or contraction of the Universe. Already in 1939, Schrodinger un
A joint analysis of the linear matter power spectrum, distance measurements from type Ia supernovae and the position of the first peak in the anisotropy spectrum of the cosmic microwave background indicates a cosmological, late-time dark matter creation at 95% confidence level.
The abundances of anti-protons and protons are considered within momentum-integrated Boltzmann equations describing Little Bangs, i.e., fireballs created in relativistic heavy-ion collisions. Despite of a large anti-proton annihilation cross section