ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological particle creation in the little bang

65   0   0.0 ( 0 )
 نشر من قبل Sergiy Akkelin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف S.V. Akkelin




اسأل ChatGPT حول البحث

Particle production by expanding in the future light cone scalar quantum field is studied by assuming that the initial state is associated with the quasiequilibrium statistical operator corresponding to fluid dynamics. We calculate particle production from a longitudinally boost-invariant expanding quantum field designed as a simple but reliable model for the central rapidity region of a relativistic collision. Exact diagonalization of the model is performed by introducing a notion of quasiparticles.

قيم البحث

اقرأ أيضاً

66 - S.V. Akkelin 2016
Ultrarelativistic heavy ion collisions produce a quark-gluon matter which lies in the future light cone originating from given points on the $t=z=0$ plane of the Minkowski spacetime manifold. We show that in a weak coupling regime the Minkowski vacuu m of massless fields presents itself in the Little Bang region as a thermal state of low $p_{T}$ particles, in close analogy to the Unruh effect for uniformly accelerated observers which are causally restricted to a Rindler wedge. It can shed some light on the mechanisms of early time thermalization in ultrarelativistic heavy ion collisions.
We make a theoretical and experimental summary of the state-of-the-art status of hot and dense QCD matter studies on selected topics. We review the Beam Energy Scan program for the QCD phase diagram and present the current status of search for QCD Cr itical Point, particle production in high baryon density region, hypernuclei production, and global polarization effects in nucleus-nucleus collisions. The available experimental data in the strangeness sector suggests that a grand canonical approach in thermal model at high collision energy makes a transition to the canonical ensemble behavior at low energy. We further discuss future prospects of nuclear collisions to probe properties of baryon-rich matter. Creation of a quark-gluon plasma at high temperature and low baryon density has been called the Little-Bang and, analogously, a femtometer-scale explosion of baryon-rich matter at lower collision energy could be called the Femto-Nova, which may possibly sustain substantial vorticity and magnetic field for non-head-on collisions.
One of the most striking examples for the production of particles out of the quantum vacuum due to external conditions is cosmological particle creation, which is caused by the expansion or contraction of the Universe. Already in 1939, Schrodinger un derstood that the cosmic evolution could lead to a mixing of positive and negative frequencies and that this would mean production or annihilation of matter, merely by the expansion. Later this phenomenon was derived via more modern techniques of quantum field theory in curved space-times by Parker (who apparently was not aware of Schrodingers work) and subsequently has been studied in numerous publications. Even though cosmological particle creation typically occurs on extremely large length scales, it is one of the very few examples for such fundamental effects where we actually may have observational evidence: According to the inflationary model of cosmology, the seeds for the anisotropies in the cosmic microwave background (CMB) and basically all large scale structures stem from this effect. In this Chapter, we shall provide a brief discussion of this phenomenon and sketch a possibility for an experimental realization via an analogue in the laboratory.
A joint analysis of the linear matter power spectrum, distance measurements from type Ia supernovae and the position of the first peak in the anisotropy spectrum of the cosmic microwave background indicates a cosmological, late-time dark matter creation at 95% confidence level.
120 - H. Schade , B. Kampfer 2009
The abundances of anti-protons and protons are considered within momentum-integrated Boltzmann equations describing Little Bangs, i.e., fireballs created in relativistic heavy-ion collisions. Despite of a large anti-proton annihilation cross section we find a small drop of the ratio of anti-protons to protons from 170 MeV (chemical freeze-out temperature) till 100 MeV (kinetic freeze-out temperature) for CERN-SPS and BNL-RHIC energies thus corroborating the solution of the previously exposed ani-proton puzzle. In contrast, the Big Bang evolves so slowly that the anti-baryons are kept for a long time in equilibrium resulting in an exceedingly small fraction. The adiabatic path of cosmic matter in the phase diagram of strongly interacting matter is mapped out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا